
SCLS393B – APRIL 1998 – REVISED MAY 2000

- *EPIC* [™] (Enhanced-Performance Implanted CMOS) Process
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- 2-V to 5.5-V V_{CC} Operation
- Support Mixed-Mode Voltage Operation on All Ports
- Schmitt-Trigger Circuitry on A, B, and CLR Inputs for Slow Input Transition Rates
- Edge Triggered From Active-High or Active-Low Gated Logic Inputs
- Retriggerable for Very Long Output Pulses, up to 100% Duty Cycle
- Overriding Clear Terminates Output Pulse
- Glitch-Free Power-Up Reset on Outputs
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- Package Options Include Plastic Small-Outline (D, NS), Shrink Small-Outline (DB), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages, Ceramic Flat (W) Packages, Chip Carriers (FK), and DIPs (J)

description

The 'LV123A devices are dual retriggerable monostable multivibrators designed for 2-V to 5.5-V V_{CC} operation.

These edge-triggered multivibrators feature output pulse-duration control by three methods. In the first method, the \overline{A} input is low, and the B input goes high. In the second method, the B input is high, and the \overline{A} input goes low. In the third method, the \overline{A} input is low, the B input is high, and the clear (CLR) input goes high.

The output pulse duration is programmable by selecting external resistance and capacitance values. The external timing capacitor must be connected between C_{ext} and R_{ext}/C_{ext} (positive) and an external resistor connected between R_{ext}/C_{ext} and V_{CC} . To obtain variable pulse durations, connect an external variable resistance between R_{ext}/C_{ext} and V_{CC} . The output pulse duration also can be reduced by taking CLR low.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. The \overline{A} , B, and \overline{CLR} inputs have Schmitt triggers with sufficient hysteresis to handle slow input transition rates with jitter-free triggering at the outputs.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2000, Texas Instruments Incorporated

SCLS393B - APRIL 1998 - REVISED MAY 2000

description (continued)

Once triggered, the basic pulse duration can be extended by retriggering the gated low-level-active (\overline{A}) or high-level-active (B) input. Pulse duration can be reduced by taking CLR low. The input/output timing diagram illustrates pulse control by retriggering the inputs and early clearing.

The variance in output pulse duration from device to device typically is less than $\pm 0.5\%$ for given external timing components. An example of this distribution for the 'LV123A is shown in Figure 11. Variations in output pulse width versus supply voltage and temperature are shown in Figure 7.

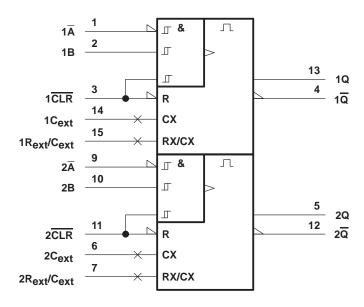
During power up, Q outputs are in the high state, and \overline{Q} outputs are in the low state. The outputs are glitch free without applying a reset pulse.

Pin assignments for these devices are identical to those of the 'AHC123A and 'AHCT123A devices for interchangeability when allowed.

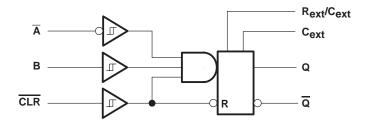
The SN54LV123A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LV123A is characterized for operation from -40°C to 85°C.

For additional application information on multivibrators, see the application report Designing With the SN74AHC123A and SN74AHCT123A, literature number SCLA014.

	(each	multivib	orator)	
	NPUTS		OUTI	PUTS
CLR	Ā	В	Q	Q
L	Х	Х	L	Н
Х	Н	Х	L†	н†
x	Х	L	L†	H‡
н	L	\uparrow	л	U
н	\downarrow	Н	л	U
↑	L	Н	л	ប

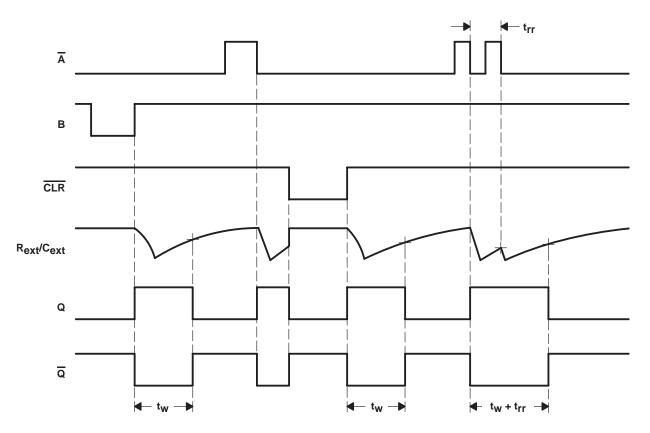

FUNCTION TABLE

[†]These outputs are based on the assumption that the indicated steady-state conditions at the A and B inputs have been set up long enough to complete any pulse started before the setup.


SCLS393B - APRIL 1998 - REVISED MAY 2000

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, DB, J, N, PW, and W packages.


logic diagram, each multivibrator (positive logic)

SCLS393B - APRIL 1998 - REVISED MAY 2000

input/output timing diagram

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage range, V _{CC}
or power-off state, V_{Ω} (see Note 1) -0.5 V to 7 V
Output voltage range in high or low state, V_O (see Notes 1 and 2)0.5 V to V_{CC} + 0.5 V
Output voltage range in power-off state, V _O (see Note 1) –0.5 V to 7 V
Input clamp current, I _{IK} (V _I < 0)
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC}) ±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$ ±25 mA
Continuous current through V _{CC} or GND ±50 mA
Package thermal impedance, θ_{JA} (see Note 3): D package
DB package
DGV package 120°C/W
NS package
PW package
Storage temperature range, T _{stg} –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. This value is limited to 5.5 V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51.

SCLS393B - APRIL 1998 - REVISED MAY 2000

recommended operating conditions (see Note 4)

			SN54LV1	23A	SN74L	/123A	
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage	MIN MAX MIN MAX tage 2 5.5 2 5.5 7 input voltage $V_{CC} = 2.V$ 1.5 1.5 1.5 7 V _{CC} = 3 V to 3.6 V V _{CC} × 0.7 V _{CC} × 0.7 V _{CC} × 0.7 V _{CC} × 0.7 7 V _{CC} = 4.5 V to 5.5 V V _{CC} × 0.7 V _{CC} × 0.7 V _{CC} × 0.7 7 V _{CC} = 2 V 0.5 0.5 0.5 0.5 0.5 V _{CC} = 2 V 0.5 </td <td>V</td>	V				
		$V_{CC} = 2 V$	1.5		1.5		
	Llich lovel input veltage	V _{CC} = 2.3 V to 2.7 V	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$		v
VIH	High-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$		v
		V_{CC} = 4.5 V to 5.5 V	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$		
		$V_{CC} = 2 V$		0.5		0.5	
V		V_{CC} = 2.3 V to 2.7 V	١	/CC × 0.3		$V_{CC} \times 0.3$	v
VIL	Low-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$	١	/CC × 0.3		$V_{CC} \times 0.3$	v
		V_{CC} = 4.5 V to 5.5 V	١	/ _{CC} ×0.3		$V_{CC} \times 0.3$	
VI	Input voltage		0	5.5	0	5.5	V
VO	Output voltage		0 0	Vcc	0	VCC	V
		$V_{CC} = 2 V$	4	-50		-50	μΑ
lou	High lovel output current	V_{CC} = 2.3 V to 2.7 V	UC CO	-2		-2	
ЮН	nigh-level output current	$V_{CC} = 3 V \text{ to } 3.6 V$	20	-6		-6	mA
		V_{CC} = 4.5 V to 5.5 V	4	-12		-12	
		$V_{CC} = 2 V$		50		50	μΑ
	Low lovel output current	V_{CC} = 2.3 V to 2.7 V		2		2	
IOL		$V_{CC} = 3 V \text{ to } 3.6 V$		6		6	mA
		V_{CC} = 4.5 V to 5.5 V		12		12	
Р.	External timing resistance	$V_{CC} = 2 V$	5k		5k		Ω
R _{ext}		$V_{CC} \ge 3 V$	1k		1k		52
C _{ext}	External timing capacitance		No restric	tion	No rest	riction	pF
Δt/ΔV _{CC}	Power-up ramp rate		1		1		ms/V
ТА	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCLS393B - APRIL 1998 - REVISED MAY 2000

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS		SN54	LV123A		SN74	LV123A		LINUT
P/	ARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		I _{OH} = -50 μA	2 V to 5.5 V	V _{CC} -0.1			V _{CC} -0.1			
Vari		$I_{OH} = -2 \text{ mA}$	2.3 V	2			2			V
∨он		I _{OH} = -6 mA	3 V	2.48			2.48			v
		I _{OH} = -12 mA	4.5 V	3.8			3.8			
		I _{OL} = 50 μA	2 V to 5.5 V			0.1			0.1	
Vai		I _{OL} = 2 mA	2.3 V			0.4			0.4	V
VOL		I _{OL} = 6 mA	3 V		M	0.44			0.44	v
		I _{OL} = 12 mA	4.5 V		VIE	0.55			0.55	
	R _{ext} /C _{ext} †	$V_I = V_{CC}$ or GND	2 V to 5.5 V		RE	±2.5			±2.5	
Ц			0 V	ć	1	±1			±1	μA
	\overline{A} , B, and \overline{CLR}	$V_I = V_{CC}$ or GND	0 V to 5.5 V	3		±1			±1	
ICC	Quiescent	$V_{I} = V_{CC} \text{ or } GND, I_{O} = 0$	5.5 V	0		20			20	μΑ
			2.3 V	Q		220			220	
1	Active state	$V_{I} = V_{CC}$ or GND,	3 V			280			280	
lcc	(per circuit)	$R_{ext}/C_{ext} = 0.5 V_{CC}$	4.5 V			650			650	μA
			5.5 V			975	975		975	
loff	-	$V_{I} \text{ or } V_{O} = 0 \text{ to } 5.5 \text{ V}$	0 V						5	μΑ
			3.3 V		1.9			1.9		~ [
Ci		$V_I = V_{CC}$ or GND	5 V		1.9			1.9		pF

[†] This test is performed with the terminal in the off-state condition.

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

			TEST CO		T _A = 25°C			SN54LV123A		SN74LV123A		UNIT
	TEST CONDITIONS		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT		
	Pulse	CLR			6			6.5	~	6.5		
t _w	duration	A or B trigger			6			6.5	5.74	6.5		ns
			D 110	C _{ext} = 100 pF	‡	94		¢.		‡		ns
t _{rr}	Pulse retrig	iger time	R _{ext} = 1 kΩ	$C_{ext} = 0.01 \ \mu F$	‡	2		¢¥.		‡		μs

[‡]See retriggering data in the *application information* section.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

			TEST CO		T _A = 25°C			SN54LV123A		SN74LV123A		UNIT
			TEST CONDITIONS		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	Pulse	CLR			5			5	~	5		-
tw	duration	A or B trigger			5			5	h.C	5		ns
	t _{rr} Pulse retrigger time R _{ext} =		P = 1 k 0	C _{ext} = 100 pF	‡	76		₽	11	‡		ns
۲r			$R_{ext} = 1 R_{22}$	$C_{ext} = 0.01 \ \mu F$	‡	1.8		¢‡`		‡		μs

[‡] See retriggering data in the *application information* section.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCLS393B - APRIL 1998 - REVISED MAY 2000

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			TEST CO	ONDITIONS	T _A = 25°C			SN54LV123A		SN74LV123A		UNIT
			TEST CO	TEST CONDITIONS		TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	Pulse	CLR			5			5	~	5		20
^t w	duration	A or B trigger]		5			5	120	5		ns
L.	t_{rr} Pulse retrigger time $R_{ext} = 1 k\Omega$		$P_{1} = 1 k 0$	C _{ext} = 100 pF	†	59		₽		†		ns
۲r			rext = 1 K22	$C_{ext} = 0.01 \ \mu F$	†	1.5		¢†		†		μs

[†] See retriggering data in the *application information* section.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	TEST	Т	Α = 25°C	;	SN54L	/123A	SN74L	/123A	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	A or B	Q or Q			14.5*	31.4*	1*	37*	11	37	
^t pd	CLR	Q or \overline{Q}	C _L = 15 pF		13*	25*	1*	29.5*	1	29.5	ns
	CLR trigger	Q or \overline{Q}			15.1*	33.4*	1*	39*	1	39	
	A or B	Q or \overline{Q}			16.6	36	1	42	1	42	
^t pd	CLR	Q or \overline{Q}	C _L = 50 pF		14.7	32.8	1	34.5	1	34.5	ns
	CLR trigger	Q or Q			17.4	38	1	6 44	1	44	
			$C_L = 50 \text{ pF},$ $C_{ext} = 28 \text{ pF},$ $R_{ext} = 2 k\Omega$		197	260	DUCT	320		320	ns
tw‡		Q or \overline{Q}	$\begin{array}{c} \text{C}_{\text{L}} = 50 \text{ pF},\\ \text{C}_{\text{ext}} = 0.01 \mu\text{F},\\ \text{R}_{\text{ext}} = 10 k\Omega \end{array}$	90	100	110	æ 90	110	90	110	μs
			$\begin{array}{l} C_L = 50 \text{ pF},\\ C_{ext} = 0.1 \mu\text{F},\\ R_{ext} = 10 k\Omega \end{array}$	0.9	1	1.1	0.9	1.1	0.9	1.1	ms
Δt_W §			CL = 50 pF		±1						%

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

 $t_W = Duration of pulse at Q and \overline{Q} outputs$ $\delta_{\Delta t_W} = Output pulse duration variation (Q and \overline{Q}) between circuits in same package$

SCLS393B - APRIL 1998 - REVISED MAY 2000

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

00				-	_						
PARAMETER	FROM	то	TEST	T,	ຊ = 25°C	;	SN54L	/123A	SN74L	V123A	UNIT
	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	A or B	Q or \overline{Q}			10.2*	20.6*	1*	24*	1	24	
^t pd	CLR	Q or \overline{Q}	C _L = 15 pF		9.3*	15.8*	1*	18.5*	1	18.5	ns
	CLR trigger	Q or \overline{Q}			10.6*	22.4*	1*	26*	1	26	
	A or B	Q or Q			11.8	24.1	1	27.5	1	27.5	
^t pd	CLR	Q or Q	C _L = 50 pF		10.5	19.3	1	22	1	22	ns
	CLR trigger	Q or \overline{Q}			12.3	25.9	1	29.5	1	29.5	
			$C_L = 50 \text{ pF},$ $C_{ext} = 28 \text{ pF},$ $R_{ext} = 2 \text{ k}\Omega$		182	240	, ^{ZONQ}	300		300	ns
_{tw} †		Q or \overline{Q}	$\begin{array}{c} C_L = 50 \text{ pF},\\ C_{ext} = 0.01 \mu\text{F},\\ R_{ext} = 10 k\Omega \end{array}$	90	100	110	وم 90	110	90	110	μs
			$\begin{array}{l} C_L = 50 \text{ pF},\\ C_{ext} = 0.1 \mu\text{F},\\ R_{ext} = 10 k\Omega \end{array}$	0.9	1	1.1	0.9	1.1	0.9	1.1	ms
Δt_W^{\ddagger}			CL = 50 pF		±1						%

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

 t_{W} = Duration of pulse at Q and \overline{Q} outputs

 $\ddagger \Delta t_W =$ Output pulse duration variation (Q and \overline{Q}) between circuits in same package

	FROM	то	TEST	Т	λ = 25°C	;	SN54L	/123A	SN74L	V123A	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	A or B	Q or Q			7.1*	12*	1*	14*	1	14	
^t pd	CLR	Q or Q	C _L = 15 pF		6.5*	9.4*	1*	11*	1	11	ns
	CLR trigger	Q or Q			7.4*	12.9*	1*	15*	1	15	
	A or B	Q or Q			8.3	14	1	16	1	16	
^t pd	CLR	Q or Q	C _L = 50 pF		7.4	11.4	1	13	1	13	ns
	CLR trigger	Q or Q			8.7	14.9	1	2 17	1	17	
tw†			$C_L = 50 \text{ pF},$ $C_{ext} = 28 \text{ pF},$ $R_{ext} = 2 \text{ k}\Omega$		167	200	^L Onq	240		240	ns
		Q or \overline{Q}	$\begin{array}{c} C_L = 50 \text{ pF},\\ C_{ext} = 0.01 \mu\text{F},\\ R_{ext} = 10 k\Omega \end{array}$	90	100	110	æ 90	110	90	110	μs
			$\begin{array}{l} C_L = 50 \text{ pF},\\ C_{ext} = 0.1 \mu\text{F},\\ R_{ext} = 10 k\Omega \end{array}$	0.9	1	1.1	0.9	1.1	0.9	1.1	ms
Δt_w^{\ddagger}					±1						%

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

 $\dagger t_{W}$ = Duration of pulse at Q and \overline{Q} outputs

 $\ddagger \Delta t_w =$ Output pulse duration variation (Q and \overline{Q}) between circuits in same package

SCLS393B - APRIL 1998 - REVISED MAY 2000

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER		TEST CONDITIONS			UNIT
	$C_1 = 50 pF_2$	f = 10 MHz	3.3 V	44	ъF	
Cpd	C _{pd} Power dissipation capacitance			5 V	49	рF

NOTES: A. CL includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r = 3 ns, t_f = 3 ns.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SCLS393B - APRIL 1998 - REVISED MAY 2000

APPLICATION INFORMATION

caution in use

To prevent malfunctions due to noise, connect a high-frequency capacitor between V_{CC} and GND, and keep the wiring between the external components and Cext and Rext/Cext terminals as short as possible.

power-down considerations

Large values of Cext may cause problems when powering down the 'LV123A because of the amount of energy stored in the capacitor. When a system containing this device is powered down, the capacitor may discharge from V_{CC} through the protection diodes at pin 7 or pin 15. Current through the input protection diodes must be limited to 20 mA; therefore, the turn-off time of the V_{CC} power supply must not be faster than t = V_{CC} × C_{ext}/20 mA. For example, if V_{CC} = 5 V and C_{ext} = 22 pF, the V_{CC} supply must turn off no faster than t = $(5 \text{ V}) \times (22 \text{ pF})/20\text{mA} = 5.5 \text{ ms}$. Usually, this is not a problem because power supplies are heavily filtered and cannot discharge at this rate. When a more rapid decrease of V_{CC} to zero occurs, the 'LV123A may sustain damage. To avoid this possibility, use external clamping diodes.

output pulse duration

The output pulse duration, t_w , is determined primarily by the values of the external capacitance (C_T) and timing resistance (R_T). The timing components are connected as shown in Figure 2.

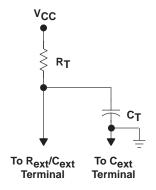


Figure 2. Timing-Component Connections

The pulse duration is given by:

 $t_w = K \times R_T \times C_T$

if C_T is ≥ 1000 pF, K = 1.0

or

if C_T is < 1000 pF, K can be determined from Figure 9

where:

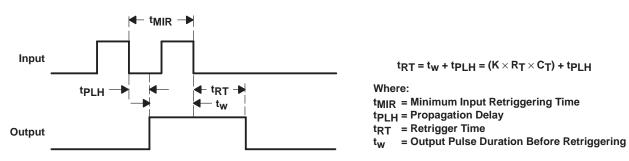
tw = pulse duration in ns

 R_T = external timing resistance in k Ω

C_T = external capacitance in pF

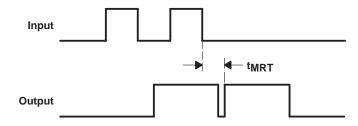
K = multiplier factor

Equation 1 and Figures 5 or 6 can be used to determine values for pulse duration, external resistance, and external capacitance.


(1)

SCLS393B - APRIL 1998 - REVISED MAY 2000

APPLICATION INFORMATION


retriggering data

The minimum input retriggering time (t_{MIR}) is the minimum time required after the initial signal before retriggering the input. After t_{MIR}, the device retriggers the output. Experimentally, it also can be shown that, to retrigger the output pulse, the two adjacent input signals should be t_{MIR} apart, where $t_{MIR} = 0.30 \times t_{w}$. The retrigger pulse duration is calculated as shown in Figure 3.

The minimum value from the end of the input pulse to the beginning of the retriggered output should be approximately 15 ns to ensure a retriggered output. This is illustrated in Figure 4.

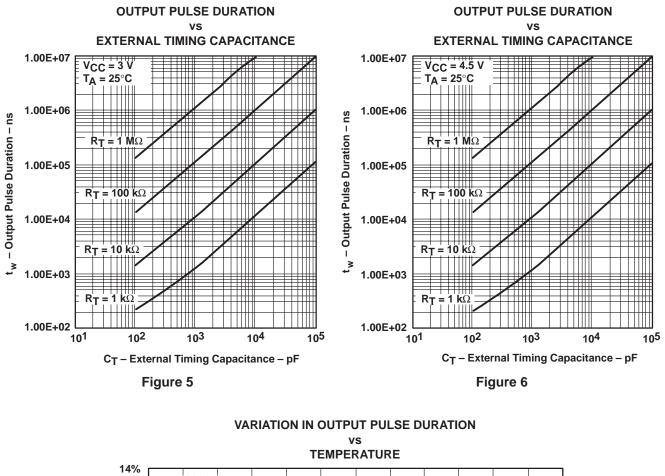
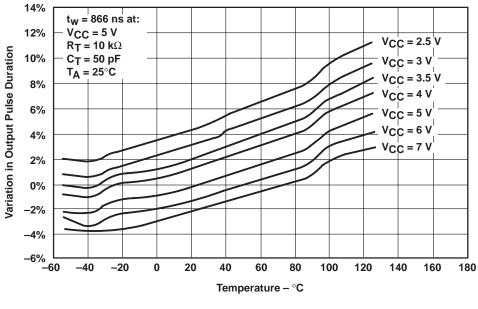
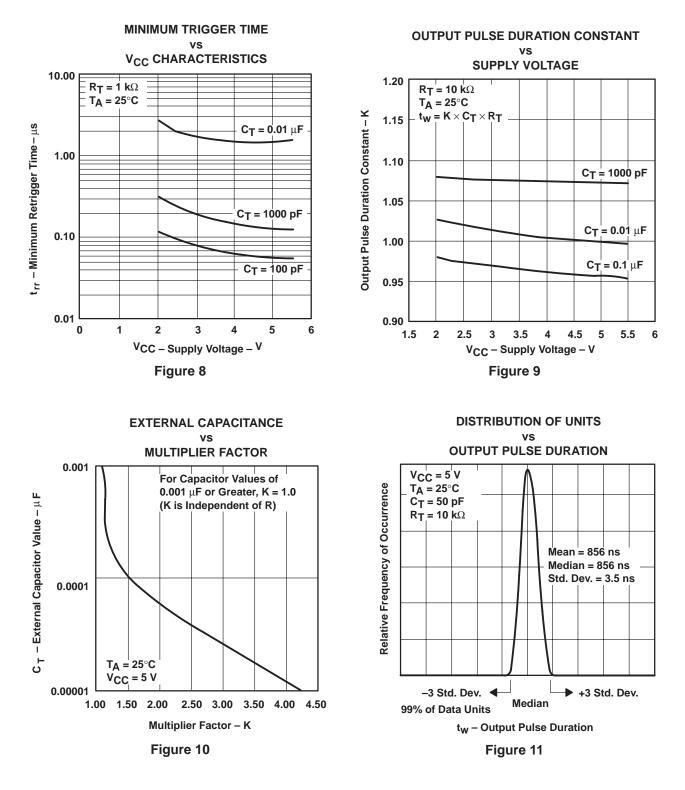

tMRT = Minimum Time Between the End of the Second Input Pulse and the Beginning of the Retriggered Output tMRT= 15 ns

Figure 4. Input/Output Requirements

SN54LV123A, SN74LV123A DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS SCLS393B – APRIL 1998 – REVISED MAY 2000

APPLICATION INFORMATION[†]




Figure 7

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

SN54LV123A, SN74LV123A DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH SCHMITT-TRIGGER INPUTS SCLS393B – APRIL 1998 – REVISED MAY 2000

APPLICATION INFORMATION[†]

[†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated