SN10KHT5573 OCTAL ECL-TO-TTL TRANSLATOR WITH D-TYPE TRANSPARENT LATCHES AND 3-STATE OUTPUTS

SDZS015 - MAY 1990 - REVISED OCTOBER 1990

- 10KH Compatible
- ECL and TTL Control Inputs
- Noninverting Outputs
- Flow-Through Architecture Optimizes PCB Layout
- Center Pin V_{CC}, V_{EE}, and GND Configurations Minimize High-Speed Switching Noise
- Package Options Include "Small Outline" Packages and Standard Plastic 300-mil DIPs

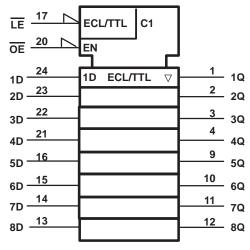
(TOP VIEW) 24 🛮 1D 1Q 23 1 2D 2Q[3Q**∏** 3 22 3D 4Q**∏** 4 21 1 4D 20 OE (TTL) Vcc∏ 5 GND ⊓ 6 19 NFF GND 7 18 GND GND d 8 17 TE (ECL) 5Q**∏** 16 1 5D 6Q**∏** 10 15**∏** 6D 14 7D 7Q / 11 8Q 13 T 8D

DW OR NT PACKAGE

description

This octal ECL-to-TTL translator is designed to provide efficient translation between a 10KH ECL signal environment and a TTL signal environment. This device is designed specifically to improve the performance and density of ECL-to-TTL CPU/bus-oriented functions such as memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The eight latches of the SN10KHT5573 are transparent D-type latches. While latch enable ($\overline{\text{LE}}$) is low, the Q outputs follow the data (D) inputs. When $\overline{\text{LE}}$ is high, the Q outputs are latched at the levels that were set up at the D inputs.

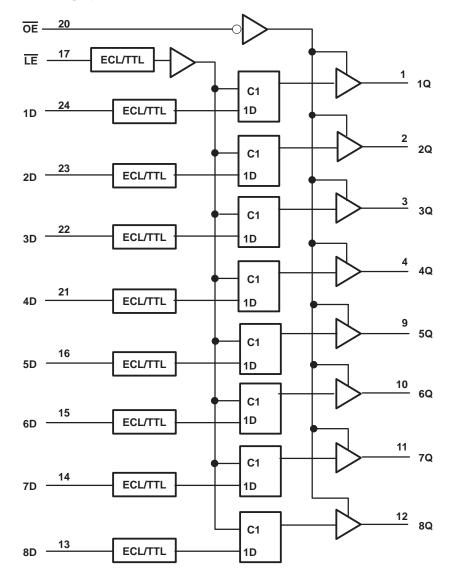

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive bus lines without need for interface or pullup components. Output-enable \overline{OE} does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are off.

The SN10KHT5573 is characterized for operation from 0° to 75°C.

FUNCTION TABLE

OUTPUT CONTROL		DATA INPUT	OUTPUT (TTL)		
OE LE		D	Q		
L	L	L	L		
L	L	Н	Н		
L	Н	Х	Q_0		
Н	Χ	Х	Z		

logic symbol†



† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SDZS015 - MAY 1990 - REVISED OCTOBER 1990

logic diagram (positive logic)

SN10KHT5573 OCTAL ECL-TO-TTL TRANSLATOR WITH D-TYPE TRANSPARENT LATCHES AND 3-STATE OUTPUTS

SDZS015 - MAY 1990 - REVISED OCTOBER 1990

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Supply voltage range, V _{EE}	8 V to 0 V
Input voltage range, TTL (see Note 1)	1.2 V to 7 V
Input voltage range, ECL	V _{EE} to 0 V
Input current range, TTL	30 mA to 5 mA
Current into any output in the low state	96 mA
Voltage applied to any output in the disabled or power-off state	
Voltage applied to any output in the high state	0.5 V to V _{CC}
Operating free-air temperature range	0°C to 75°C
Storage temperature range	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The TTL input voltage ratings may be exceeded provided the input current ratings are observed.

recommended operating conditions

			MIN	NOM	MAX	UNIT
Vcc	TTL supply voltage		4.5	5	5.5	V
VEE	ECL supply voltage		-4.94	-5.2	-5.46	V
VIH	TTL high-level input voltage					V
VIL	TTL low-level input voltage				0.8	V
liK	TTL input clamp current				-18	mA
	ECL high-level input voltage (see Note 2)	0°C	-1170		-840	
VIH		25°C	-1130		-810	mV
		75°C	-1070		-735	
		0°C	-1950		-1480	
VIL	ECL low-level input voltage (see Note 2)	25°C	-1950		-1480	mV
		75°C	-1950		-1450	
ГОН	High-level output current	·			-15	mA
loL	Low-level output current				48	mA
TA	Operating free-air temperature		0		75	°C

NOTE 2: The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic levels only.

SN10KHT5573 OCTAL ECL-TO-TTL TRANSLATOR WITH D-TYPE TRANSPARENT LATCHES AND 3-STATE OUTPUTS

SDZS015 - MAY 1990 - REVISED OCTOBER 1990

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS MIN TYPT			MAX	UNIT		
VIK	OE only	$V_{CC} = 4.5 \text{ V},$	$V_{EE} = -4.94 \text{ V},$	$I_{I} = -18 \text{ mA}$				-1.2	V
Ц	OE only	$V_{CC} = 5.5 \text{ V},$	$V_{EE} = -5.46 \text{ V},$	V _I = 7 V				0.1	mA
lіН	OE only	$V_{CC} = 5.5 \text{ V},$	$V_{EE} = -5.46 \text{ V},$	V _I = 2.7 V				20	μΑ
I _{IL}	OE only	$V_{CC} = 5.5 \text{ V},$	$V_{EE} = -5.46 \text{ V},$	V _I = 0.5 V				-0.5	mA
		$V_{CC} = 5.5 \text{ V},$	$V_{EE} = -5.46 \text{ V},$	V _I = -840 V	0°C			350	
lіН	Data inputs and LE	$V_{CC} = 5.5 \text{ V},$	$V_{EE} = -5.46 \text{ V},$	V _I = -810 V	25°C			350	μΑ
		$V_{CC} = 5.5 \text{ V},$	$V_{EE} = -5.46 \text{ V},$	$V_{ } = -735 \text{ V}$	75°C			350	
		vits and $\overline{\text{LE}}$ $V_{\text{CC}} = 5.5 \text{ V}, \qquad V_{\text{EE}} = -5.46$			0°C	0.5			μА
I _{IL}	Data inputs and LE		$V_{EE} = -5.46 \text{ V},$	V _I = -1950 V	25°C	0.5			
					75°C	0.5			
V		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA},$	$V_{EE} = -5.2 \text{ V} \pm 5\%$		2.4	3.3		V
VOH		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -15 \text{ mA},$	$V_{EE} = -5.2 \text{ V} \pm 5\%$		2	3.1		V
VOL		$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 48 \text{ mA},$	$V_{EE} = -5.2 \text{ V} \pm 5\%$			0.38	0.55	V
lozh		$V_{CC} = 5.5 \text{ V},$	$V_0 = 2.7 V$,	$V_{EE} = -5.46 \text{ V}$				50	μΑ
lozL		$V_{CC} = 5.5 \text{ V},$	$V_0 = 0.5 V$,	$V_{EE} = -5.46 \text{ V}$				-50	μΑ
los‡		$V_{CC} = 5.5 \text{ V},$	$V_O = 0 V$,	$V_{EE} = -5.46 \text{ V}$		-100		-225	mA
ICCH		$V_{CC} = 5.5 \text{ V},$	$V_{EE} = -5.46 \text{ V}$				62	89	mA
ICCL		$V_{CC} = 5.5 \text{ V},$	$V_{EE} = -5.46 \text{ V}$				78	111	mA
ICCZ		$V_{CC} = 5.5 \text{ V},$	$V_{EE} = -5.46 \text{ V}$	•			75	108	mA
I _{EE}		$V_{CC} = 5.5 \text{ V},$	$V_{EE} = -5.46 \text{ V}$				-34	-48	mA
Ci		V _{CC} = 5 V,	V _{EE} = −5.2 V				5		pF
Co		$V_{CC} = 5 V$,	V _{EE} = −5.2 V				7		pF

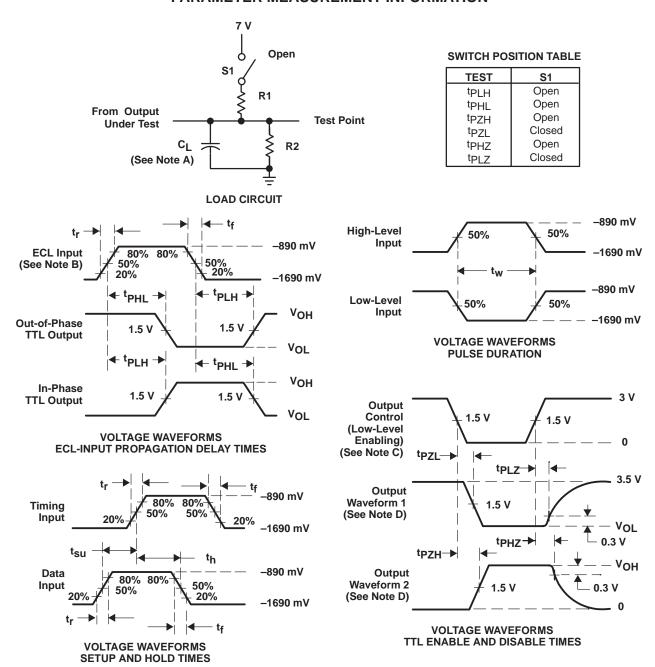
timing requirements

		V _{EE} = -4.94 \	V _{CC} = 4.5 V to 5.5 V, V _{EE} = -4.94 V to -5.46 V, T _A = MIN to MAX§	
		MIN	MAX]
t _W	Pulse duration, LE high	4		ns
t _{su}	Setup time, data before LE↓	1		ns
t _h	Hold time, data after LE↓	1		ns

[§] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[†] All typical values are at $V_{CC} = 5$ V, $V_{EE} = -5.2$ V, and $T_A = 25$ °C. ‡ Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

SN10KHT5573 OCTAL ECL-TO-TTL TRANSLATOR WITH D-TYPE TRANSPARENT LATCHES AND 3-STATE OUTPUTS SDZS015 - MAY 1990 - REVISED OCTOBER 1990


switching characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C_L = 50 pF, R1 = 500 Ω, R2 = 500 Ω, T_A = MIN to MAX		UNIT	
			MIN	TYP†	MAX	
^t PLH	D	0	1.9	3.9	6.4	
t _{PHL}		Q	2.3	4.2	6.8	ns
t _{PLH}	ĪĒ	Q	2.2	4	6.7	ns
^t PHL		y	2.6	4.5	7.2	113
^t PZH	ŌĒ	Q	1.1	3.2	5.9	ne
^t PZL		y	2.3	4.6	7.8	ns
^t PHZ	ŌĒ	Q	1.8	4	5.9	ns
tPLZ		y	0.6	3.4	6.5	113

[†] All typical values are at $V_{CC} = 5$ V, $V_{EE} = -5.2$ V, and $T_A = 25^{\circ}C$.

SDZS015 - MAY 1990 - REVISED OCTOBER 1990

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.
 - B. For ECL inputs, input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_f \leq$ 1.5 ns. $t_f \leq$ 1.5 ns.
 - C. For TTL inputs, input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
 - D. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated