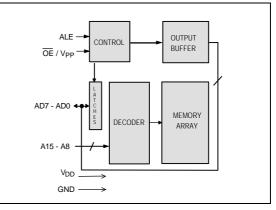


64K ~ 8 ELECTRICALLY ERASABLE EPROM

GENERAL DESCRIPTION

The W27LE520 is a high speed, low power Electrically Erasable and Programmable Read Only Memory organized as $65,536 \times 8$ bits. It includes latches for the lower 8 address lines to multiplex with the 8 data lines. To cooperate with the MCU, this device could save the external TTL component, also cost and space. It requires only one supply in the range of 3.0V to 3.6V or 4.5V to 5.5V in normal read mode. The W27LE520 provides an electrical chip erase function. It will be a great convenient when you need to change/update the contents in the device.

FEATURES


- High speed access time: 70/90 nS (max.)
- Read operating current: 8/20 mA (max.)
- Erase/Programming operating current 30 mA (max.)
- Standby current: 20/100 μA (max.)
- Unregulated battery power supply range, 3.0V to 3.6V and 4.5V to 5.5V
- +13V erase and programming voltage

PIN CONFIGURATIONS

A10 [1 0	20 A8
A12]	2	19 AD1
A14 [3	18 AD3
ALE]	4	17 AD5
VDD [5 TSSOP	16 AD7
OE/VPP]	6 Top View	15 GND
A15]	7	14 AD6
A13]	8	13 AD4
A11]	9	12 AD2
A9]	10	11 AD0
OE/VPP	1 O	20 VDD
A15	2	19 ALE
A13	3	18 A14
A11	4	17 A12
A9	5 SOP	16 A10
AD0	6 Top View	15 A8
AD2	7	14 AD1
AD4	8	13 AD3
AD6	9	12 AD5
GND	10	11 AD7

- High Reliability CMOS Technology
- 2K V ESD Protection
- 200 mA Latchup Immunity
- Fully static operation
- All inputs and outputs directly LVTTL/CMOS compatible
- Three-state outputs
- Available packages: 20-pin TSSOP and 20-pin SOP

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
AD0–AD7	Address/Data Inputs/Outputs
A8–A15	Address Inputs
ALE	Address Latch Enable
OE/Vpp	Output Enable, Program/Erase Supply Voltage
Vdd	Power Supply
GND	Ground

FUNCTIONAL DESCRIPTION

Read Mode

Unlike conventional UVEPROMs, which has \overline{CE} and \overline{OE} two control functions, the W27LE520 has one \overline{OE}/VPP and one ALE (address_latch_enable) control functions. The ALE makes lower address A[7:0] to be latched in the chip when it goes from high to low, so that the same bus can be used to output data during read mode. i.e. lower address A[7:0] and data bus DQ[7:0] are multiplexed. \overline{OE}/VPP controls the output buffer to gate data to the output pins. When addresses are stable, the address access time (TACC) is equal to the delay from ALE to output (TCE), and data are available at the outputs TOE after the falling edge of \overline{OE}/VPP , if TACC and TCE timings are met.

Erase Mode

The erase operation is the only way to change data from "0" to "1." Unlike conventional UVEPROMs, which use ultraviolet light to erase the contents of the entire chip (a procedure that requires up to half an hour), the W27LE520 uses electrical erasure. Generally, the chip can be erased within 100 mS by using an EPROM writer with a special erase algorithm.

There are two ways to enter Erase mode. One is to raise \overline{OE}/VPP to VPE (13V), VDD = VDE (6.5V), A9 = VHH (13V), A10 = high A8&A11 = low, and all other address pins include AD[7:0] keep at fixed low or high. Pulsing ALE high starts the erase operation. The other way is somewhat like flash, by programming two consecutive commands into the device and then enter Erase mode. The two commands are loading Data = AA(hex) to Addr. = 5555(hex) and Data = 10(hex) to Addr. = 2AAA(hex). Be careful to note that the ALE pulse widths of these two commands are different: One is 50 µS, while the other is 100 mS. Please refer to the Smart Erase Algorithm 1 & 2.

Erase Verify Mode

The device will enter the Erase Verify Mode automatically after Erase Mode. Only power down the device can force the device enter Normal Read Mode again.

Program Mode

Programming is the only way to change cell data from "1" to "0." The program mode is entered when \overline{OE}/VPP is raised to VPP (13V), VDD = VDP (6.5V), the address pins equal the desired addresses, and the input pins equal the desired inputs. Pulsing ALE high starts the programming operation.

Program Verify Mode

The device will enter the Program Verify Mode automatically after Program Mode. Only power down the device can force the device enter Normal Read Mode again.

Erase/Program Inhibit

Erase or program inhibit mode allows parallel erasing or programming of multiple chips with different data. When ALE low, erasing or programming of non-target chips is inhibited, so that except for the ALE and \overline{OE}/VPP pins, the W27LE520 may have common inputs.

Standby Mode

The standby mode significantly reduces VDD current. This mode is entered when ALE and \overline{OE}/VPP keep high. In standby mode, all outputs are in a high impedance state.

System Considerations

An EPROM's power switching characteristics require careful device decoupling. System designers are interested in three supply current issues: standby current levels (ISB), active current levels (IDD), and transient current peaks produced by the falling and rising edges of ALE Transient current magnitudes depend on the device output's capacitive and inductive loading. Proper decoupling capacitor selection will suppress transient voltage peaks. Each device should have a

0.1 μ F ceramic capacitor connected between its VDD and GND. This high frequency, low inherentinductance capacitor should be placed as close as possible to the device. Additionally, for every eight devices, a 4.7 μ F electrolytic capacitor should be placed at the array's power supply connection between VDD and GND. The bulk capacitor will overcome voltage slumps caused by PC board trace inductances.

TABLE OF OPERATING MODES

(VPP = 13V, VPE = 13V, VHH = 12V, VDP = 6.5V, VDE = 6.5V, VDD = 3.3V or 5.0V, VDI = 5.0V, X = VIH or VIL)

MODE			PIN		
	ALE	OE/Vpp	OTHER ADDRESS	Vdd	AD[7:0]
Address Latch Enable	VIH	Vін	AIN	Vdd	A[7:0]
Read	VIL	VIL	AIN	Vdd	DOUT
Output Disable	VIL/ VIH	Vih	Х	Vdd	High Z
Standby	Vih	Vін	Х	Vdd	A[7:0]
Program	VIH	VPP	AIN	Vdp	DIN
Erase 1	Vih	Vpe	A8&A11 = VIL, A9 = VPE, A10 = VIH, Others = X	Vde	Х
Erase 2	Vін	VPE	First command: Addr. = 5555 (hex)	Vde	AA(hex)
			Second command: Addr. = 2AAA (hex)	Vde	10(hex)
Product Identifier- manufacturer	VIL	VIL	A8 = VIL, A9 = VHH, Others = X	Vdi	DA(Hex)
Product Identifier-device	VIL	VIL	A8 = VIH, A9 = VHH, Others = X	Vdi	1F(Hex)

DC CHARACTERISTICS

Absolute Maximum Ratings

PARAMETER	RATING	UNIT
Ambient Temperature with Power Applied	-55 to +125	°C
Storage Temperature	-65 to +150	°C
Voltage on all Pins with Respect to Ground Except OE/VPP, A9 and VDD Pins	-2.0 to +7.0	V
Voltage on OE/VPP Pin with Respect to Ground	-2.0 to +7.0	V
Voltage on A9 Pin with Respect to Ground	-2.0 to +7.0	V
Voltage VDD Pin with Respect to Ground	-2.0 to +14.0	V

Notes:

1. Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

2. Minimum voltage is -0.6V DC which may undershoot to -2.0V for pulses of less than 20 nS. Maximum output pin voltage is VDD +0.75V DC which may overshoot to +7.0V for pulses of less than 20 nS.

DC Erase Characteristics

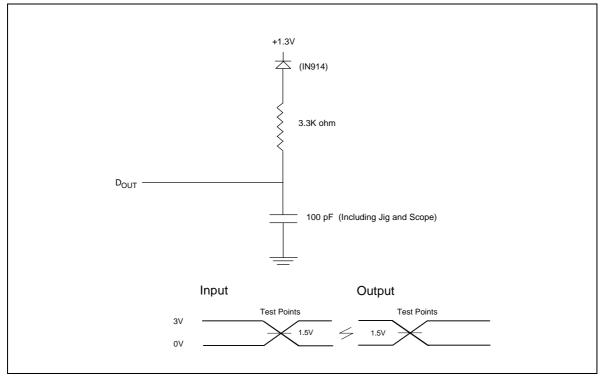
(TA = 25° C \pm 5° C, VDD = 6.5V \pm 0.25V)

PARAMETER	SYM.	CONDITIONS		LIMIT	S	UNIT
			MIN.	TYP.	MAX.	
Input Load Current	LI	VIN = VIL or VIH	-10	-	10	μA
VDD Erase Current	ICP	ALE = VIH, $\overline{OE}/VPP = VPE$	-	-	30	mA
		A8 & A11 = VIL, A9 = VPE,				
		A10 = VIH, Others = X				
VPP Erase Current	I PP	ALE = VIH, $\overline{OE}/VPP = VPE$	-	-	30	mA
		A8 & A11 = VIL, A9 = VPE,				
		A10 = VIH, Others = X				
Input Low Voltage	VIL	-	-0.3	-	0.8	V
Input High Voltage	Vін	-	2.4	-	VDD+0.3	V
Output Low Voltage (Verify)	Vol	IOL = 2.1 mA	-	-	0.45	V
Output High Voltage (Verify)	Vон	Юн = -0.4 mA	2.4	-	-	-
A9 SID Voltage		VDD = 5V ±10%	11.5	12	12.5	V
	Vнн					
A9 Erase Voltage	VPE	-	12.75	13	13.25	V
VPP Erase Voltage	VPE	-	12.75	13	13.25	V
VDD Supply Voltage (Erase & Erase Verify)	Vde	-	6.25	6.5	6.75	V

Note: VDD must be applied simultaneously or before VPP and removed simultaneously or after VPP.

CAPACITANCE

(VDD = 3.0V to 3.6V or 4.5V to 5.5V, TA = 25° C, f = 1 MHz)


PARAMETER	SYMBOL		MAX.	UNIT
Input Capacitance	CIN	VIN = 0V	6	pF
Output Capacitance	Соит	Vout = 0V	12	pF

AC CHARACTERISTICS

AC Test Conditions

PARAMETER	CONDITIONS
Input Pulse Levels	0V/3V
Input Rise and Fall Times	10 nS
Input and Output Timing Reference Level	1.5V/1.5V
Output Load	CL = 100 pF, IOH/IOL = -0.4 mA/2.1 mA

AC Test Load and Waveforms

Publication Release Date: September 2000 Revision A2

- 5 -

READ OPERATION DC CHARACTERISTICS

(VDD = 3.0V to 3.6V or 4.5V to 5.5V, TA = 0 to 70° C)

PARAMETER	SYM.	CO	NDITIONS		LIMITS		UNIT
				MIN.	TYP.	MAX.	
Input Load Current	 LI	VIN = 0V to VD	D	-5	-	5	μA
Output Leakage Current	ILO	VOUT = $0V$ to V	VDD	-5	-	5	μA
Standby VDD Current (CMOS input)	ISB	VDD = 3.0V to 3.6V			-	20	μA
		VDD = 4.5V to 5.5V	±0.3V All others inputs = GND/ VDD ±0.3V		-	100	
VDD Operating Current	IDD	VDD = 3.0V to 3.6V	ALE = VIL, IOUT = 0 mA	-	-	8	mA
		VDD = 4.5V to 5.5V	f = 5 MHz	-	-	20	
Input Low Voltage	VIL		-		-	0.8	V
Input High Voltage	Vih		-	2.0	-	Vdd +0.3	V
Output Low Voltage	Vol	IOL = 2.1 mA		-	-	0.4	V
Output High Voltage	Кон	IOH = -0.4 mA		2.4	-	-	V

READ OPERATION AC CHARACTERISTICS

(VDD = 3.0V to 3.6V or 4.5V to 5.5V, TA = 0 to 70° C)

PARAMETER	SYM.	W27LE520-70		W27LE520-90		UNIT
		MIN.	MAX.	MIN.	MAX.	
Address Latch Enable Access Time	TCE	-	70	-	90	nS
Address Latch Enable Width	TALE	45	-	45	-	nS
Address Access Time	TACC	-	70	-	90	nS
Address Setup Time	TAS	15	-	15	-	nS
Address Hold Time	Тан	15	-	15	-	nS
Output Enable Access Time	Τοε	-	35	-	35	nS
OE /VPP High to High-Z Output	Tdf	-	25	-	25	nS
Output Hold from Address Change	Тон	0	-	0	-	nS

Note: VDD must be applied simultaneously or before VPP and removed simultaneously or after VPP.

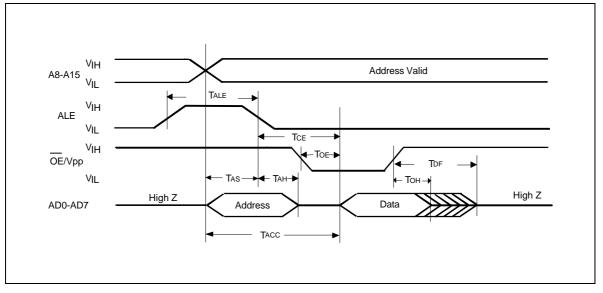
DC PROGRAMMING CHARACTERISTICS

(Vdd = 6.5V ± 0.25 V, Ta = 25° C $\pm 5^{\circ}$ C)

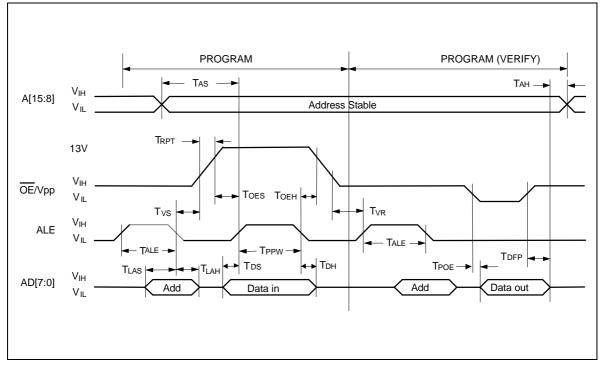
PARAMETER	SYM.	CONDITIONS	LIMITS		UNIT	
			MIN.	TYP.	MAX.	
Input Load Current	lu	VIN = VIL or VIH	-10	-	10	μA
VDD Program Current	ICP	ALE = VIH,	-	-	30	mA
		OE /VPP = VPP				
VPP Program Current	IPP	ALE = VIH,	-	-	30	mA
		OE /VPP = VPP				
Input Low Voltage	VIL	-	-0.3	-	0.8	V
Input High Voltage	Vін	-	2.4	-	Vdd +0.5	V
Output Low Voltage (Verify)	Vol	IOL = 2.1 mA	-	-	0.45	V
Output High Voltage (Verify)	Vон	Iон = -0.4 mA	2.4	-	-	V
A9 Silicon I.D. Voltage	Vнн	VDD = 5V ±10%	11.5	12.0	12.5	V
VPP Program Voltage	Vpp	-	12.75	13.0	13.25	V
VDD Supply Voltage (Program)	Vdp	-	6.25	6.5	6.75	V

AC PROGRAMMING/ERASE CHARACTERISTICS

(VDD = $6.5V \pm 0.25V$, TA = $25^{\circ} C \pm 5^{\circ} C$)

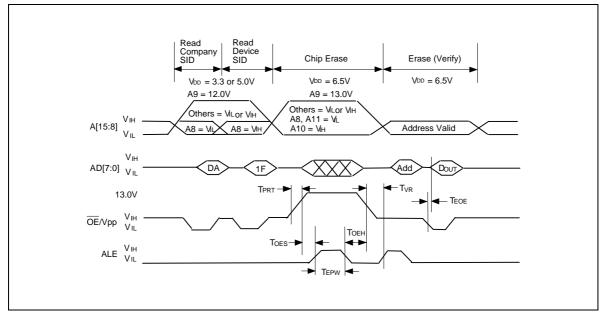

PARAMETER	SYM.		LIMITS		UNIT
		MIN.	TYP.	MAX.	
OE /VPP Pulse Rise Time	TPRT	50	-	-	nS
Address Latch Enable Width	TALE	500	-	-	nS
ALE Program Pulse Width	TPPW	47.5	50	52.5	μS
ALE Erase Pulse Width	Tepw	95	100	105	mS
ALE Erase Pulse Width 1	TEPW1	47.5	50	52.5	μS
ALE Erase Pulse Width 2	TEPW2	95	100	105	mS
Latched Address Setup Time	TLAS	100	-	-	nS
Latched Address Hold Time	TLAH	100	-	-	nS
Address Setup Time	TAS	2.0	-	-	μS
Address Hold Time	Тан	0	-	-	μS
OE /VPP Setup Time	TOES	2.0	-	-	μS
OE /VPP Hold Time	Тоен	2.0	-	-	μS
Data Setup Time	TDS	2.0	-	-	μS
Data Hold Time	Трн	2.0	-	-	μS
Data Valid from OE /VPP Low during Erase Verify	TEOE	-	-	150	nS
Data Valid from OE /VPP Low during Program Verify	TPOE	-	-	150	nS
OE /VPP High to Output High Z	Tdfp	0	-	130	nS
OE /VPP High Voltage Delay After ALE Low	Tvs	2.0	-	-	μS
OE /VPP Recovery Time	TVR	2.0	-	-	μS

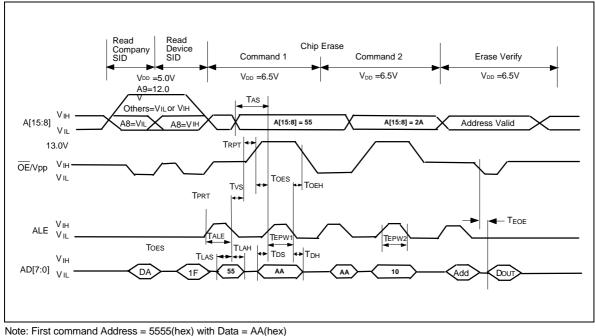
Note: VDD must be applied simultaneously or before VPP and removed simultaneously or after VPP.



TIMING WAVEFORMS

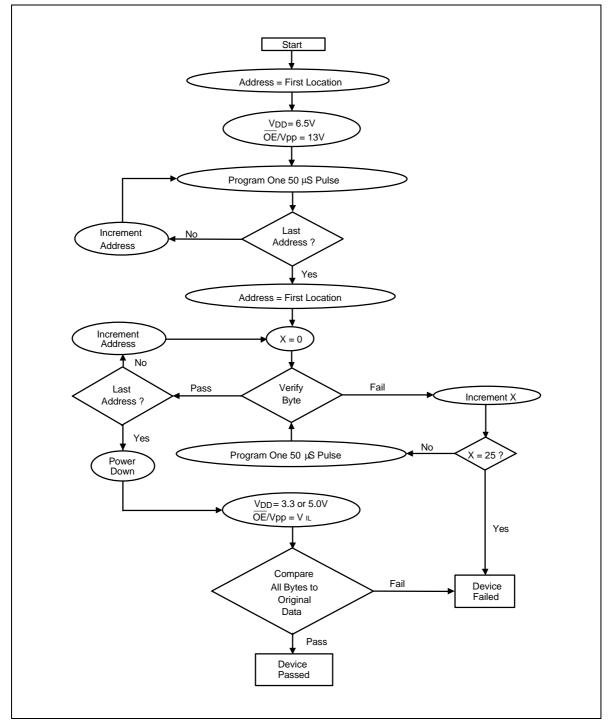
AC Read Waveform


Programming Waveform

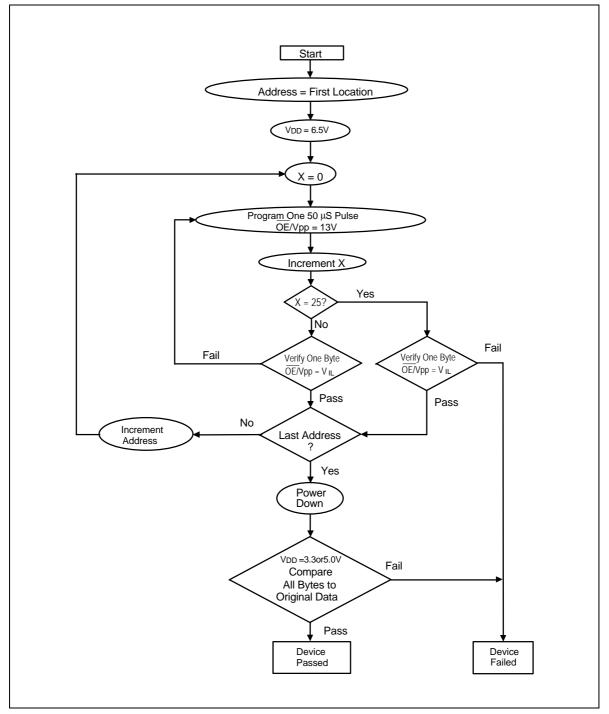


Timing Waveforms, continued

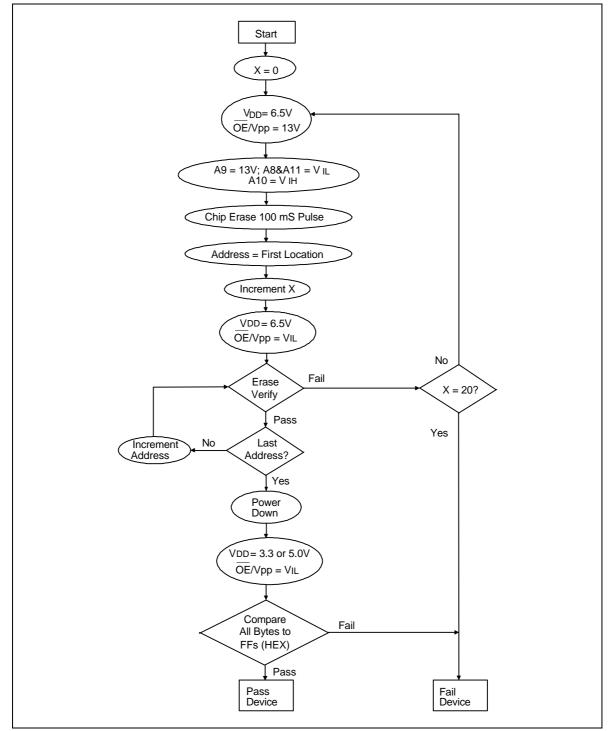
Erase Waveform 1


Erase Waveform 2

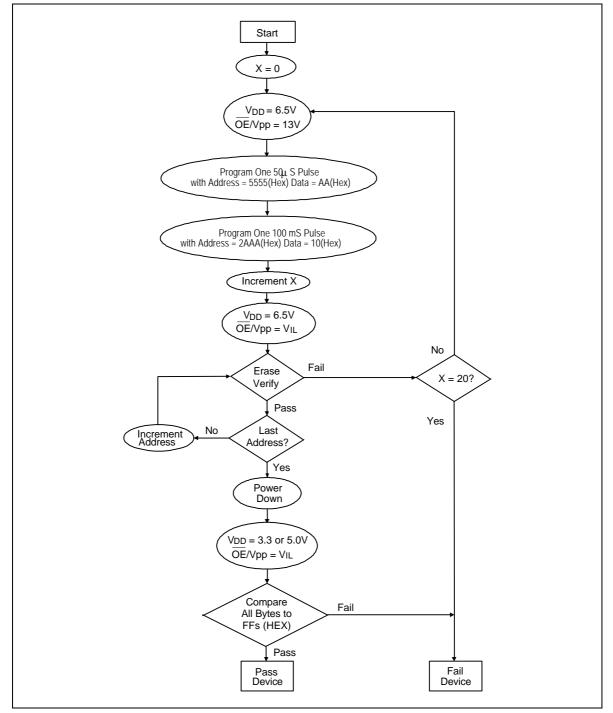
Second command Address = 5555(nex) with Data = AA(nex) Second command Address = 2AAA(hex) with Data = 10(hex)



SMART PROGRAMMING ALGORITHM 1



SMART PROGRAMMING ALGORITHM 2



SMART ERASE ALGORITHM 1

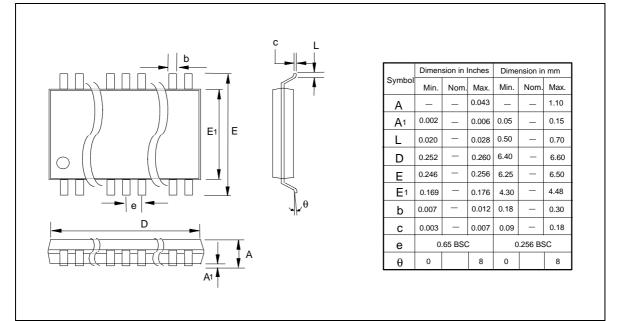
SMART ERASE ALGORITHM 2

ORDERING INFORMATION

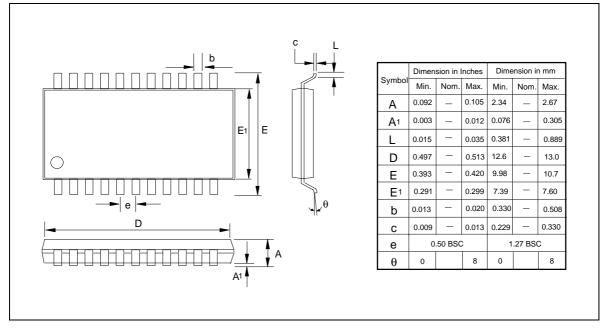
PART NO.	ACCESS TIME (nS)	OPERATING CURRENT MAX. (mA)	STANDBY CURRENT MAX. (mA)	PACKAGE
W27LE520W-70*	70	8/20	20/100	173 mil TSSOP
W27LE520W-90*	90	8/20	20/100	173 mil TSSOP
W27LE520S-70*	70	8/20	20/100	300 mil SOP
W27LE520S-90*	90	8/20	20/100	300 mil SOP

Notes:

1. The Part No is preliminary and might be changed after project is consoled.


2. Winbond reserves the right to make changes to its products without prior notice.

3. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.



PACKAGE DIMENSIONS

20-pin TSSOP

20-pin SOP

VERSION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
A1	Jun. 2000	-	Initial Issued
A2	Sep. 2000	9	Correct Erase Waveform
		3	Modify Address Latch Enable Mode: X -> Ain;
			Modify Output Disable Mode: VIL -> VIL/VIH;
			Modify Standby Mode: Ain -> X;
			Typo Correction

Headquarters

No. 4, Creation Rd. III,UScience-Based Industrial Park,HHsinchu, TaiwanHTEL: 8863-577066HFAX: 886-3-5796096Hhttp://www.winbond.com.tw/Voice & Fax-on-demand: 8862-27197006

rk, No. 378 Kwun Tong Rd; Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064 / \$2-27197006 Winbond Electronics North America Corp. Winbond Memory Lab. Winbond Microelectronics Corp. Winbond Systems Lab. 2727 N. First Street, San Jose, CA 95134, U.S.A. TEL: 4089436666 FAX: 408-5441798

 Taipei Office

 11F, No. 115, Sec. 3, MinSheng East Rd.,

 Taipei, Taiwan

 TEL:
 886-2-27190505

 FAX:
 886-2-27197502

Note: All data and specifications are subject to change withou t notice.

Winbond Electronics (H.K.) Ltd.

Unit 9-15, 22F, Millennium City,