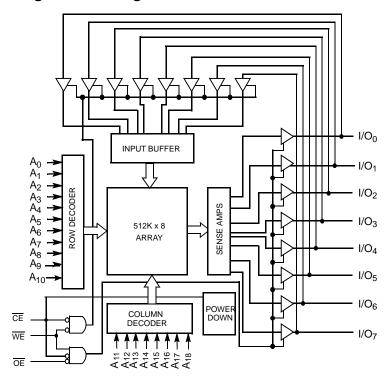


512K x 8 Static RAM

Features

- · High speed
 - $t_{AA} = 12 \text{ ns}$
- · Low active power
 - 1320 mW (max.)
- Low CMOS standby power (Commercial L version)
 - 2.75 mW (max.)
- 2.0V Data Retention (400 μW at 2.0V retention)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features
- Available in Pb-free and non Pb-free 36-Lead (400-Mil) Molded SOJ

Functional Description[1]


The CY7C1049B is a high-performance CMOS static RAM organized as 524,288 words by 8 bits. Easy memory expansion is provided by an <u>acti</u>ve LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and tri-state drivers. Writing to the device is <u>ac</u>complished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A_0 through A_{18}).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1049B is available in a standard 400-mil-wide 36-pin SOJ package with center power and ground (revolutionary) pinout.

Logic Block Diagram

Pin Configuration

	SO. Top Vi	-
A ₀	10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	36 NC 35 A ₁₈ 34 A ₁₇ 33 A ₁₆ 32 A ₁₅ 31 OE 30 I/O ₇ 29 I/O ₆ 28 GND 27 I/O ₅ 25 I/O ₄ 24 A ₁₄ 23 A ₁₃ 22 A ₁₂ 21 A ₁₁ 20 A ₁₀ 19 NC

Note:

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Selection Guide

			-12	-15	-17
Maximum Access Time (ns)			12	15	17
Maximum Operating Current (mA)			240	220	195
Maximum CMOS Standby	Commercial		8	8	8
Current (mA)	Industrial		-	-	-
	Commercial	L	-	-	0.5

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C

Supply Voltage on $\rm V_{CC}$ to Relative $\rm GND^{[2]}$ –0.5V to +7.0V

DC Voltage Applied to Outputs in High Z State $^{[2]}$ -0.5V to V CC + 0.5V

DC Input Voltage^[2].....-0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

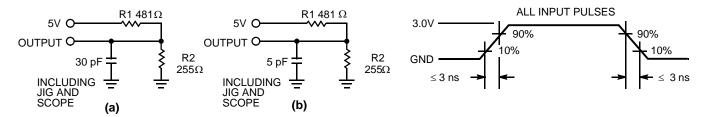
Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	4.5V-5.5V
Industrial	-40°C to +85°C	

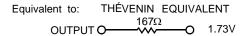
Electrical Characteristics Over the Operating Range

Parameter	Description	Test Condit	ions	-	12	-	15	-	17	
				Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4$.0 mA	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0$) mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V
V_{IL}	Input LOW Voltage ^[2]			-0.3	0.8	-0.3	0.8	-0.3	0.3	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-1	+1	-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	GND ≤ V _{OUT} ≤ V _{CC} , Output Disabled		-1	+1	-1	+1	-1	+1	μА
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.$ $f = f_{MAX} = 1/t_{RC}$			240		220		195	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, f = f_{\text{MAX}} \end{aligned}$			40		40		40	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		8		8		8	mA
	Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$,	Com'l L		-		-		0.5	mA
		or $V_{IN} \le 0.3V$, $f = 0$	Ind'l		-		-		8	mA

Document #: 38-05169 Rev. *B

Page 2 of 9


^{2.} Minimum voltage is-2.0V for pulse durations of less than 20 ns.



Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms

Note:

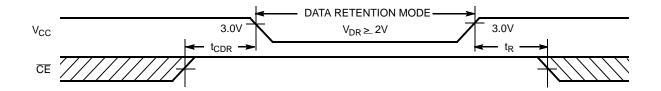
3. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics Over the Operating Range^[4]

			12		15		17	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle	•	•	•	•	•	•	•	•
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		1		ms
t _{RC}	Read Cycle Time	12		15		17		ns
t _{AA}	Address to Data Valid		12		15		17	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15		17	ns
t _{DOE}	OE LOW to Data Valid		6		7		8	ns
t _{LZOE}	OE LOW to Low Z ^[7]	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		6		7		7	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		6		7		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15		17	ns
Write Cycle	[8, 9]							
t _{WC}	Write Cycle Time	12		15		17		ns
t _{SCE}	CE LOW to Write End	10		12		12		ns
t _{AW}	Address Set-Up to Write End	10		12		12		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	10		12		12		ns
t _{SD}	Data Set-Up to Write End	7		8		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		6		7		8	ns

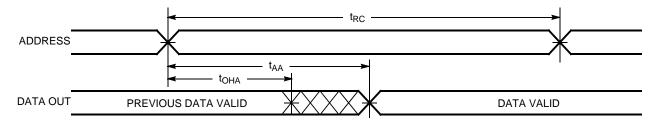
Data Retention Characteristics Over the Operating Range

Parameter	Description			Conditions ^[11]	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention				2.0		V
I _{CCDR}	Data Retention Current	Com'l	L	$\frac{V_{CC} = V_{DR} = 2.0V}{CE \ge V_{CC} - 0.3V}$		200	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			$CE \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$	0		ns
t _R ^[10]	Operation Recovery Time				t _{RC}		ns

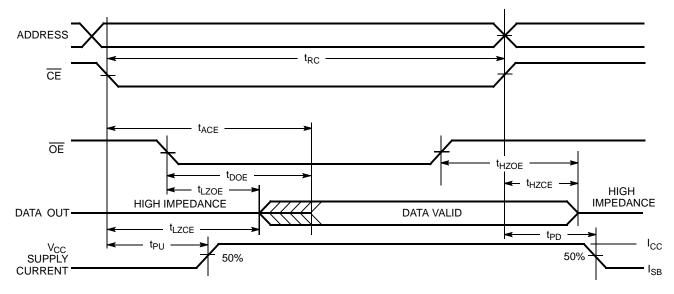

Notes:

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
 This part has a voltage regulator which steps down the voltage from 5V to 3.3V internally. t_{power} time has to be provided initially before a read/write operation in the steps down the voltage from 5V to 3.3V internally.
- is started.
- 6. t_{HZOE}, t_{HZOE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
- through the strength of the stre

Document #: 38-05169 Rev. *B



Data Retention Waveform



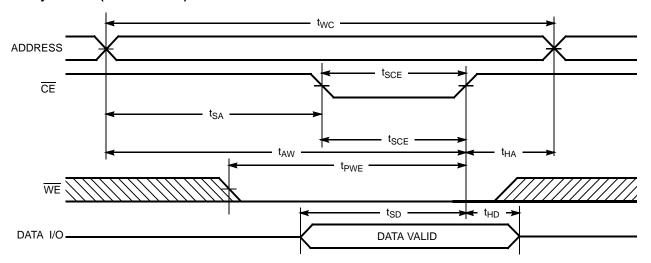
Switching Waveforms

Read Cycle No. 1^[12, 13]

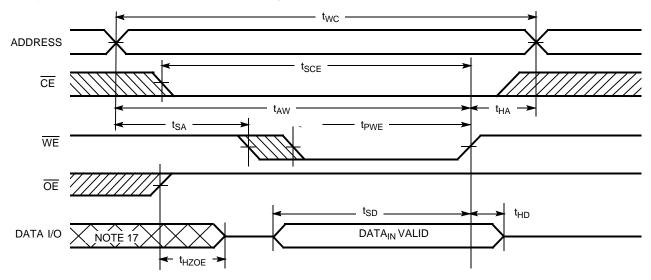
Read Cycle No. 2 (OE Controlled)[13, 14]

Notes:

- 12. <u>Device</u> is continuously selected. <u>OE</u>, <u>CE</u> = V_{IL}.


 13. <u>WE</u> is HIGH for read cycle.

 14. Address valid prior to or coincident with <u>CE</u> transition LOW.

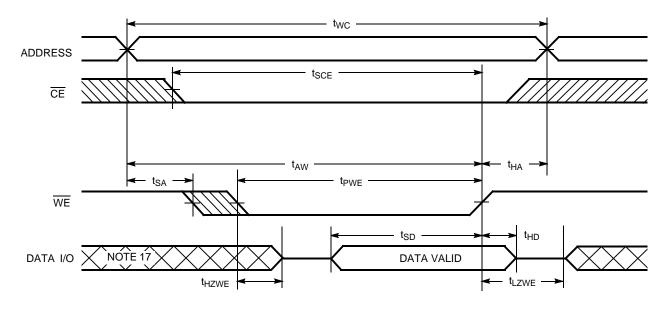


Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[15, 16]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[15, 16]

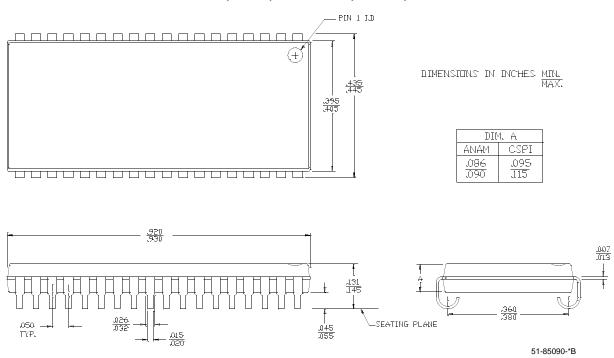
15. Data I/O is high impedance if $\overline{\text{OE}} = \underline{V}_{\text{IH}}$.


16. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

17. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[16]


Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1049B-12VC	51-85090	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049B-12VXC		36-Lead (400-Mil) Molded SOJ (Pb-free)	
15	CY7C1049B-15VC		36-Lead (400-Mil) Molded SOJ	
	CY7C1049B-15VXC	İ	36-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1049B-15VI		36-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1049B-15VXI		36-Lead (400-Mil) Molded SOJ (Pb-free)	
17	CY7C1049BL-17VC		36-Lead (400-Mil) Molded SOJ	Commercial

Package Diagram

36-lead (400-Mil) Molded SOJ (51-85090)

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	110209	12/02/01	SZV	Change from Spec number: 38-00937 to 38-05169
*A	116465	09/16/02	CEA	Add applications foot note to data sheet, page 1
*B	498501	See ECN	NXR	Removed 20 ns and 25 ns speed bin Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Updated the Ordering Information Table

Document #: 38-05169 Rev. *B