
Switching Transistor NPN Silicon

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Emitter Voltage	VCES	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current — Continuous — 10 μs Pulse	IC	300 500	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Motorola Preferred Device

MPS3646

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

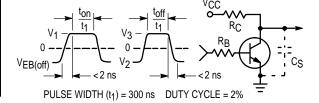
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit		
OFF CHARACTERISTICS						
Collector–Emitter Breakdown Voltage (I _C = 100 μAdc, V _{BE} = 0)	V(BR)CES	40	_	Vdc		
Collector-Emitter Sustaining Voltage ⁽¹⁾ (I _C = 10 mAdc, I _B = 0)	VCEO(sus)	15	_	Vdc		
Collector-Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)	V(BR)CBO	40	_	Vdc		
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc$, $I_C = 0$)	V(BR)EBO	5.0	_	Vdc		
Collector Cutoff Current (VCE = 20 Vdc, VBE = 0) (VCE = 20 Vdc, VBE = 0, TA = 65°C)	ICES	_ _	0.5 3.0	μAdc		

^{1.} Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

Preferred devices are Motorola recommended choices for future use and best overall value.

MPS3646


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

	Chara	Symbol	Min	Max	Unit	
ON CHARACTER	ISTICS(1)		•		•	•
DC Current Gain		$(I_C = 30 \text{ mAdc}, V_{CE} = 0.4 \text{ Vdc})$ $(I_C = 100 \text{ mAdc}, V_{CE} = 0.5 \text{ Vdc})$ $(I_C = 300 \text{ mA}, V_{CE} = 1.0 \text{ Vdc})$	hFE	30 25 15	120 — —	_
Collector – Emitter Saturation Voltage		(I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc) (I _C = 300 mAdc, I _B = 30 mAdc) (I _C = 30 mA, I _B = 3.0 mA, T _A = 65°C)	VCE(sat)	_ _ _ _	0.2 0.28 0.5 0.3	Vdc
$(I_C = 100 \text{ mAdc}, I_B = 10 \text{ m})$		(I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 100 mAdc, I _B = 10 mAdc) (I _C = 300 mAdc, I _B = 30 mA)	V _{BE} (sat)	0.73 — —	0.95 1.2 1.7	Vdc
SMALL-SIGNAL	CHARACTERISTICS	3			•	
Current-Gain — Bandwidth Product (IC = 30 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)				350	_	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)				_	5.0	pF
Input Capacitance (VEB = 0.5 Vdc, I _C = 0, f = 1.0 MHz)				_	9.0	pF
SWITCHING CHA	RACTERISTICS				•	
Turn-On Time			ton	_	18	ns
Delay Time	(V_{CC} = 10 Vdc, I_{C} = 300 mAdc, I_{B1} = 30 mAdc) (Figure 1)		t _d	_	10	ns
Rise Time			t _r	_	15	ns
Turn-Off Time	(V _{CC} = 10 Vdc, I _C :	(V _{CC} = 10 Vdc, I _C = 300 mAdc, I _{B1} = I _{B2} = 30 mAdc)		_	28	ns
Fall Time	(Figure 1)		t _f	_	15	ns
Storage Time $(V_{CC} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, I_{B1} = I_{B2} = 10 \text{ mAdc})$ (Figure 2)		t _S	_	18	ns	

^{1.} Pulse Test: Pulse Width \leq 300 $\mu s;$ Duty Cycle \leq 2.0%.

Figure 1. Switching Time Equivalent Test Circuit

Test Condition	lc	vcc	Rs	RC	C _{S(max)}	V _{BE(off)}	٧1	V ₂	V ₃
	mΑ	V	Ω	Ω	pF	V	V	V	V
Α	10	3	330	270	4	-1.5	10.55	-4.15	10.70
В	10	10	580	960	4	_	_	-4.65	6.55
С	100	10	560	96	12	-2.0	6.35	-4.65	6.55

CURRENT GAIN CHARACTERISTICS

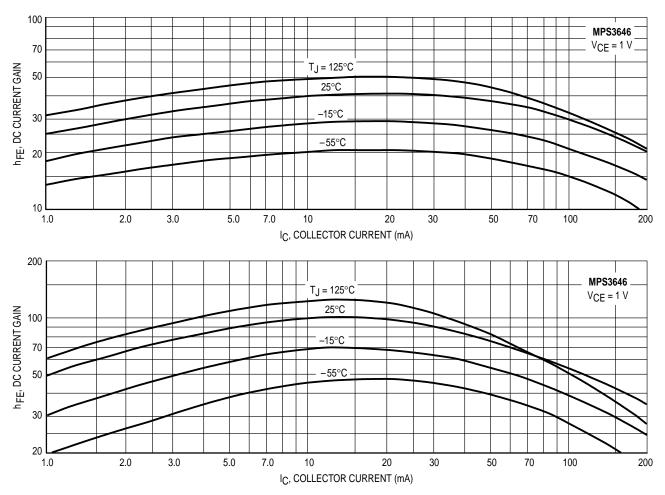


Figure 2. Minimum Current Gain

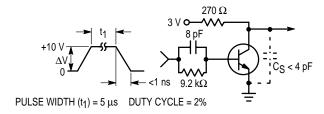


Figure 3. QT Test Circuit

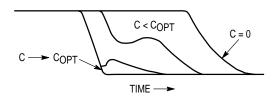


Figure 4. Turn-Off Waveform

NOTE 1

When a transistor is held in a conductive state by a base current, IB, a charge, QS, is developed or "stored" in the transistor. QS may be written: $Q_S = Q_1 + Q_V + Q_X$.

Q₁ is the charge required to develop the required collector current. This charge is primarily a function of alpha cutoff frequency. QV is the charge required to charge the collector-base feedback capacity. Qx is excess charge resulting from overdrive, i.e., operation in saturation.

The charge required to turn a transistor "on" to the edge of saturation is the sum of Q1 and QV which is defined as the active region charge, Q_A . $Q_A = I_{B1}t_\Gamma$ when the transistor is driven by a constant current step

(I_{B1}) and I_{B1} $< < \frac{I_C}{h_{FF}}$

If IB were suddenly removed, the transistor would continue to conduct until Qs is removed from the active regions through an external path or through internal recombination. Since the internal recombination time is long compared to the ultimate capability of a transistor, a charge, Q_T, of opposite polarity, equal in magnitude, can be stored on an external capacitor, C, to neutralize the internal charge and considerably reduce the turn-off time of the transistor. Figure 3 shows the test circuit and Figure 4 the turn-off waveform. Given QT from Figure 13, the external C for worst-case turn-off in any circuit is: $C = Q_T/\Delta V$, where ΔV is defined in Figure 3.

"ON" CONDITION CHARACTERISTICS

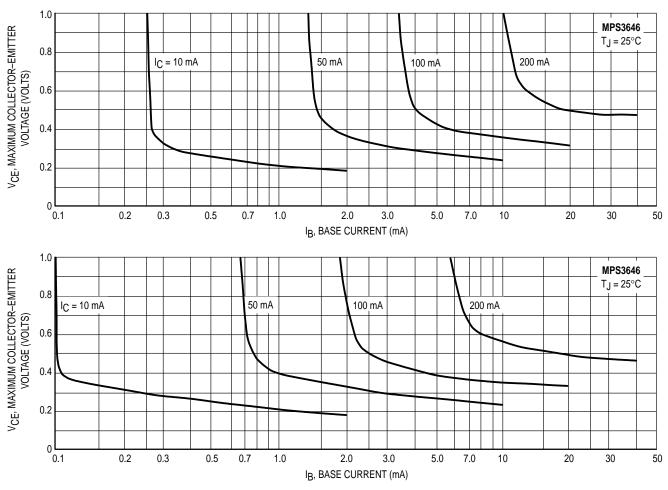
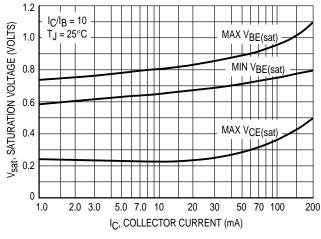
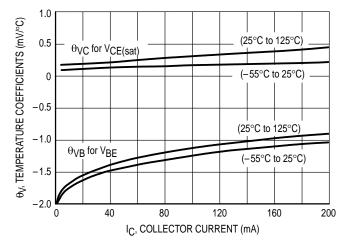




Figure 5. Collector Saturation Region

Figure 6. Saturation Voltage Limits

Figure 7. Temperature Coefficients

DYNAMIC CHARACTERISTICS

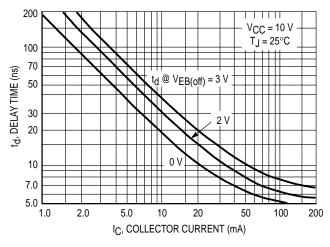
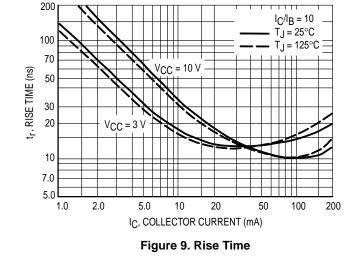



Figure 8. Delay Time

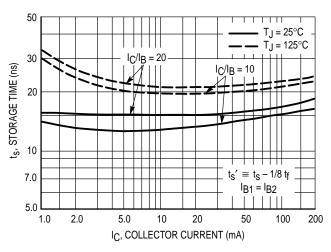


Figure 10. Storage Time

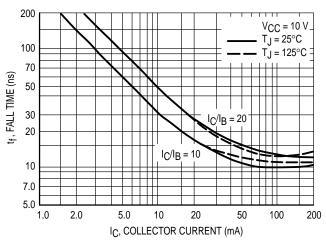


Figure 11. Fall Time

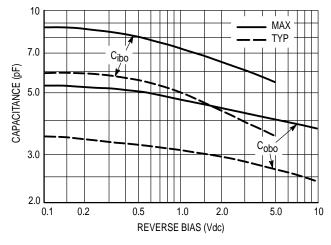


Figure 12. Junction Capacitance

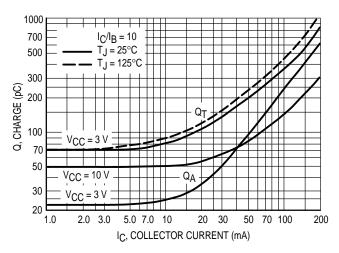
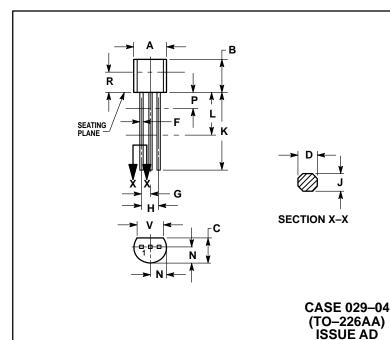



Figure 13. Maximum Charge Data

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K
 MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIMETERS		
DIM	MIN MAX		MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
С	0.125	0.165	3.18	4.19	
D	0.016	0.022	0.41	0.55	
F	0.016	0.019	0.41	0.48	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
Р		0.100		2.54	
R	0.115		2.93		
V	0.135		3 43		

STYLE 1: PIN 1. EMITTER

BASE 3. COLLECTOR

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

