

NC - No internal connection

description

The TL750L and TL751L series of fixed-output voltage regulators offers 5-V, 8-V, 10-V, and 12-V options. The TL751L series has the addition of an enable (ENABLE) input. When ENABLE is high, the regulator output is placed in the high-impedance state. This gives the designer complete control over power up, power down, or emergency shutdown.

The TL750L and TL751L series are low-dropout positive-voltage regulators specifically designed for battery-powered systems. These devices incorporate overvoltage and current-limiting protection circuitry, along with internal reverse-battery protection circuitry to protect the devices and the regulated system. The series is fully protected against 60-V load-dump and reverse-battery conditions. Extremely low quiescent current during full-load conditions makes these devices ideal for standby power systems.

The TL750LxxC and the TL751LxxC series are characterized for operation over the virtual junction temperature range of 0°C to 125°C. The TL750L05Q and TL751L05Q are characterized for operation over the virtual junction temperature range of -40°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2000, Texas Instruments Incorporated

SLVS017J - SEPTEMBER 1987 - REVISED AUGUST 2000

	AVAILABLE OPTIONS						
	V _O TYP		PA	CKAGED DEVICE	S		
Tj	AT 25°C	SMALL OUTLINE (D)	HEAT-SINK MOUNTED (KC)	PLASTIC CYLINDRICAL (LP)	PLASTIC DIP (P)	CHIP FORM (Y)	
	5 V	TL750L05CD TL751L05CD	TL750L05CKC	TL750L05CLP	TL750L05CP TL751L05CP	TL750L05Y	
0°C to 125°C	8 V	TL750L08CD TL751L08CD	TL750L08CKC	TL750L08CLP	TL750L08CP TL751L08CP	TL750L08Y	
0 C 10 125 C	10 V	TL750L10CD TL751L10CD	TL750L10CKC	TL750L10CLP	TL750L10CP TL751L10CP	TL750L10Y	
	12 V	TL750L12CD TL751L12CD	TL750L12CKC	TL750L12CLP	TL750L12CP TL751L12CP	TL750L12Y	
–40°C to 125°C	5 V	TL750L05QD TL751L05QD	_	_	_	_	

The D, KTE, and LP packages are available taped and reeled. Add the suffix R to device type (e.g., TL750L05CDR). Chip forms are tested at 25°C.

DEVICE COMPONENT COUNT		
Transistors	20	
JFETs	2	
Diodes	5	
Resistors	16	

absolute maximum ratings over operating junction temperature range (unless otherwise noted)[†]

Continuous input voltage Transient input voltage, $T_A = 25^{\circ}C$ (see Note 1) Continuous reverse input voltage		60 V
Transient reverse input voltage, t ≤ 100 ms		–50 V
Package thermal impedance, θ_{JA} (see Notes 2 and 3):		
	KC package	
	LP package	156°C/W
	P package	85°C/W
Virtual junction temperature range, T ₁		–40°C to 150°C
Lead temperature 1,6 mm (1/16 inch) for 10 seconds .		260 mA
Storage temperature range, T _{stg}		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The transient input voltage rating applies to the waveform shown in Figure 1.

- 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

SLVS017J - SEPTEMBER 1987 - REVISED AUGUST 2000

recommended operating conditions over recommended operating junction temperature range (unless otherwise noted)

			MIN	MAX	UNITS
		TL75xL05	6	26	
Input voltage, Vi		TL75xL08	9	26	v
input voitage, v		TL75xL10	11	26	v
			13	26	
High-level ENABLE input voltage, V _{IH}		TL751Lxx	2	15	V
	T _A = 25°C	TL751Lxx	-0.3	0.8	V
Low-level ENABLE input voltage, VIL [†]	$T_A = full range^{\ddagger}$	TL751Lxx	-0.15	0.8	V
Output current range, IO		TL75xLxx	0	150	mA
		TL75xLxxC	0	125	°C
Operating virtual junction temperature, TJ		TL75xL05Q	-40	125	C

[†] The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for ENABLE voltage levels and temperature only.

[‡]Full range is 0°C to 125°C for the TL75xLxxC devices, and –40°C to 125°C for the TL75L05Q devices.

electrical characteristics, $V_I = 14 V$, $I_O = 10 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted) (see Note 4)

PARAMETER			TL750L05 TL751L05		
		MIN	TYP	MAX	
Output voltage		4.80	5	5.2	V
Output voltage	$T_J = T_J(min)$ to $125^{\circ}C^{\parallel}$	4.75		5.25	v
Input regulation voltage	$V_{I} = 9 V$ to 16 V		5	10	mV
Input regulation voltage	$V_{I} = 6 V \text{ to } 26 V$		6	30	IIIV
Ripple rejection	$V_{I} = 8 V \text{ to } 18 V, \qquad f = 120 \text{ Hz}$	60	65		dB
Output regulation voltage	I _O = 5 mA to 150 mA		20	50	mV
Dropout voltago	I _O = 10 mA			0.2	V
Dropout voltage	I _O = 150 mA			0.6	v
Output noise voltage	f = 10 Hz to 100 kHz		500		μV
	I _O = 150 mA		10	12	
Input bias current	$V_{I} = 6 \text{ V to } 26 \text{ V}, \qquad I_{O} = 10 \text{ mA}, \qquad T_{J} = T_{J}(\text{min}) \text{ to } 125^{\circ} \text{C} \P$		1	2	mA
	ENABLE > 2 V			0.5	

§ Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 0.4 Ω, across the output.

 $I_{J}(min)$ is 0°C for the TL75xLxxC devices, and –40°C for the TL75xLxxQ devices.

NOTE 4: For TL750L05Q/TL751L05Q, all characteristics are measured with a 10-µF tantalum capacitor on the output with equivalent series resistance within the guidelines shown in Figure 4.

SLVS017J - SEPTEMBER 1987 - REVISED AUGUST 2000

electrical characteristics, V_I = 14 V, I_O = 10 mA, T_J = 25°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]		TL750L08 TL751L08			
		MIN	TYP	MAX		
Output voltage		7.68	8	8.32	v	
Oulput voltage	$T_J = 0^{\circ}C$ to $125^{\circ}C$	7.6		8.4	v	
Input regulation valtage	V _I = 10 V to 17 V		10	20		
Input regulation voltage	$V_{I} = 9 V \text{ to } 26 V$		25	50	mV	
Ripple rejection	V _I = 11 V to 21 V, f = 120 Hz	60	65		dB	
Output regulation voltage	I _O = 5 mA to 150 mA		40	80	mV	
Dronout voltogo	I _O = 10 mA			0.2	V	
Dropout voltage	I _O = 150 mA			0.6	6 V	
Output noise voltage	f = 10 Hz to 100 kHz		500		μV	
Input bias current	I _O = 150 mA		10	12	mA	
	$V_{I} = 9 V \text{ to } 26 V$, $I_{O} = 10 \text{ mA}$, $T_{J} = 0^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$		1	2		
	ENABLE > 2 V			0.5		

[†] Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 0.4 Ω, across the output.

electrical characteristics, $V_I = 14 V$, $I_O = 10 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]		TL750L10 TL751L10		
		MIN	TYP	MAX	
Output voltage		9.6	10	10.4	V
Oulput voltage	$T_J = 0^{\circ}C$ to $125^{\circ}C$	9.5		10.5	v
	V _I = 12 V to 19 V		10	25	mV
Input regulation voltage	$V_{I} = 11 V \text{ to } 26 V$		30	60	mv
Ripple rejection	V _I = 12 V to 22 V, f = 120 Hz	60	65		dB
Output regulation voltage	$I_{O} = 5 \text{ mA to } 150 \text{ mA}$		50	100	mV
Dropout voltage	I _O = 10 mA			0.2	V
Diopoul vollage	I _O = 150 mA			0.6	v
Output noise voltage	f = 10 Hz to 100 kHz		700		μV
Input bias current	I _O = 150 mA		10	12	
	$V_{I} = 11 V \text{ to } 26 V$, $I_{O} = 10 \text{ mA}$, $T_{J} = 0^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$		1	2	mA
	ENABLE > 2 V			0.5	

[†] Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 0.4 Ω, across the output.

SLVS017J - SEPTEMBER 1987 - REVISED AUGUST 2000

electrical characteristics, $V_I = 14 V$, $I_O = 10 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	TL750L12 TL751L12			UNIT	
		MIN	TYP	MAX		
Output voltage		11.52	12	12.48	V	
	$T_J = 0^{\circ}C$ to $125^{\circ}C$	11.4		12.6	v	
	V _I = 14 V to 19 V		15	30	mV	
Input regulation voltage	V _I = 13 V to 26 V		20	40		
Ripple rejection	V _I = 13 V to 23 V, f = 120 Hz	50	55		dB	
Output regulation voltage	I _O = 5 mA to 150 mA		50	120	mV	
Dropout voltogo	I _O = 10 mA			0.2	V	
Dropout voltage	I _O = 150 mA			0.6		
Output noise voltage	f = 10 Hz to 100 kHz		700		μV	
Input bias current	I _O = 150 mA		10	12		
	$V_{I} = 13 V \text{ to } 26 V$, $I_{O} = 10 \text{ mA}$, $T_{J} = 0^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$		1	2	mA	
	ENABLE > 2 V			0.5		

[†] Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 0.4 Ω, across the output.

electrical characteristics, V_I = 14 V, I_O = 10 mA, T_J = 25°C (unless otherwise noted)

PARAMETER		TL750L05Y	UNIT	
	TEST CONDITIONS [†]	MIN TYP MAX	UNIT	
Output voltage		5	V	
	V _I = 9 V to 16 V	5	mV	
Input regulation voltage	VI = 6 V to 26 V	6	IIIV	
Ripple rejection	$V_{I} = 8 V$ to 18 V, $f = 120 Hz$	65	dB	
Output regulation voltage	$I_{O} = 5 \text{ mA to } 150 \text{ mA}$	20	mV	
Output noise voltage	f = 10 Hz to 100 kHz	500	μV	
Input bias current	I _O = 150 mA	10	mA	
	$V_I = 6 V$ to 26 V, $I_O = 10 mA$	1	mA	

[†] Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 0.4 Ω, across the output.

SLVS017J - SEPTEMBER 1987 - REVISED AUGUST 2000

electrical characteristics, V_I = 14 V, I_O = 10 mA, T_J = 25°C (unless otherwise noted)

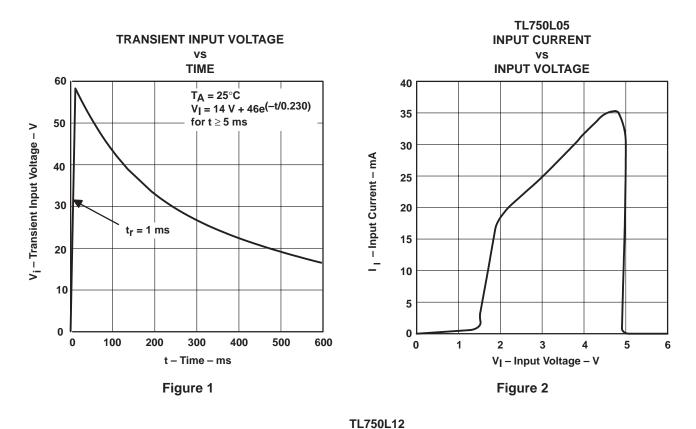
PARAMETER		TL750L08Y	UNIT
PARAMETER	TEST CONDITIONS [†]	MIN TYP MAX	UNIT
Output voltage		8	V
Input regulation voltage	$V_{I} = 10 V \text{ to } 17 V$	10	mV
	$V_{I} = 9 V$ to 26 V	25	mv
Ripple rejection	$V_{I} = 11 V \text{ to } 21 V$, $f = 120 \text{ Hz}$	65	dB
Output regulation voltage	$I_{O} = 5 \text{ mA to } 150 \text{ mA}$	40	mV
Output noise voltage	f = 10 Hz to 100 kHz	500	μV
lanut kies sument	I _O = 150 mA	10	mA
Input bias current	$V_I = 9 V$ to 26 V, $I_O = 10 mA$	1	mA

[†] Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 0.4 Ω, across the output.

electrical characteristics, V_I = 14 V, I_O = 10 mA, T_J = 25°C (unless otherwise noted)

PARAMETER		TL750L10Y	UNIT	
PARAMETER	TEST CONDITIONS [†]	MIN TYP MAX	UNIT	
Output voltage		10	V	
	V _I = 12 V to 19 V	10	mV	
Input regulation voltage	V _I = 11 V to 26 V	30	mv	
Ripple rejection	$V_{I} = 12 V \text{ to } 22 V$, $f = 120 \text{ Hz}$	65	dB	
Output regulation voltage	$I_{O} = 5 \text{ mA to } 150 \text{ mA}$	50	mV	
Output noise voltage	f = 10 Hz to 100 kHz	700	μV	
Input biog ourrent	I _O = 150 mA	10	mA	
Input bias current	$V_{I} = 11 V \text{ to } 26 V, \qquad I_{O} = 10 \text{ mA}$	1	mA	

[†] Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 0.4 Ω, across the output.


electrical characteristics, $V_I = 14 V$, $I_O = 10 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)

PARAMETER		TL750L12Y	UNIT	
	TEST CONDITIONS [†]	MIN TYP MAX	UNIT	
Output voltage		12	V	
	V _I = 14 V to 19 V	15	mV	
Input regulation voltage	V _I = 13 V to 26 V	20	ШV	
Ripple rejection	$V_{I} = 13 V \text{ to } 23 V$, $f = 120 \text{ Hz}$	55	dB	
Output regulation voltage	I _O = 5 mA to 150 mA	50	mV	
Output noise voltage	f = 10 Hz to 100 kHz	700	μV	
logut biog gurrant	I _O = 150 mA	10	mA	
Input bias current	$V_{I} = 13 V \text{ to } 26 V$, $I_{O} = 10 \text{ mA}$	1	ША	

[†] Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 10-μF capacitor, with equivalent series resistance of less than 0.4 Ω, across the output.

SLVS017J - SEPTEMBER 1987 - REVISED AUGUST 2000

TYPICAL CHARACTERISTICS

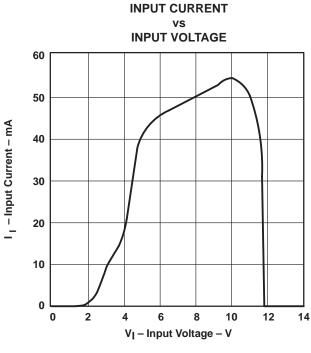


Figure 3

SLVS017J - SEPTEMBER 1987 - REVISED AUGUST 2000

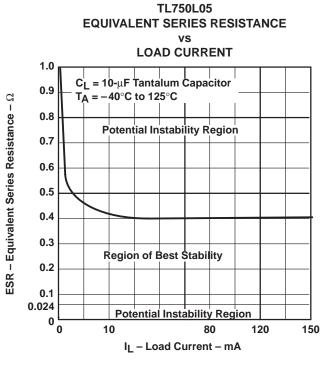


Figure 4

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated