

- **Organization**
TM124BBJ32F . . . 1 048 576 × 32
TM248CBJ32F . . . 2 097 152 × 32
- **Single 5-V Power Supply ($\pm 10\%$ Tolerance)**
- **72-Pin Single In-Line Memory Module (SIMM) for Use With Socket**
- **TM124BBJ32F – Utilizes Two 16-Megabit DRAMs in Plastic Small-Outline J-Lead (SOJ) Packages**
- **TM248CBJ32F – Utilizes Four 16-Megabit DRAMs in Plastic Small-Outline J-Lead (SOJ) Packages**
- **Long Refresh Period
 16 ms (1024 Cycles)**
- **All Inputs, Outputs, Clocks Fully TTL-Compatible**
- **3-State Output**
- **Common $\overline{\text{CAS}}$ Control for Eight Common Data-In and Data-Out Lines in Four Blocks**
- **Enhanced Page-Mode Operation With $\overline{\text{CAS}}$ -Before-RAS (CBR), RAS-Only, and Hidden Refresh**

- **Presence Detect**
- **Performance Ranges:**

	ACCESS TIME t_{RAC}	ACCESS TIME t_{AA}	ACCESS TIME t_{CAC}	READ OR CYCLE (MIN)
	(MAX)	(MAX)	(MAX)	
'124BBJ32F-60	60 ns	30 ns	15 ns	110 ns
'124BBJ32F-70	70 ns	35 ns	18 ns	130 ns
'124BBJ32F-80	80 ns	40 ns	20 ns	150 ns
'248CBJ32F-60	60 ns	30 ns	15 ns	110 ns
'248CBJ32F-70	70 ns	35 ns	18 ns	130 ns
'248CBJ32F-80	80 ns	40 ns	20 ns	150 ns

- **Low Power Dissipation**
- **Operating Free-Air Temperature Range
 0°C to 70°C**
- **Gold-Tabbed Versions Available:[†]**
TM124BBJ32F
TM248CBJ32F
- **Tin-Lead (Solder) Tabbed Versions Available:**
TM124BBJ32U
TM248CBJ32U

description

TM124BBJ32F

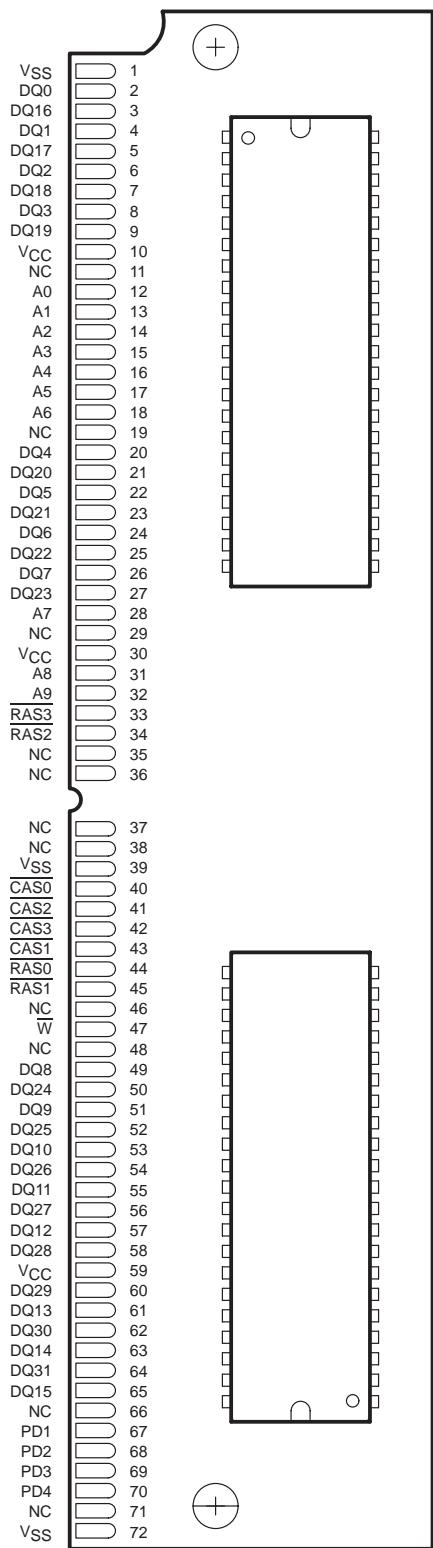
The TM124BBJ32F is a 4-MByte dynamic random-access memory (DRAM) organized as four times 1048576×8 in a 72-pin SIMM. The SIMM is composed of two TMS418160DZ, 1048576×16 -bit DRAMs, each in a 42-lead plastic SOJ package mounted on a substrate with decoupling capacitors. The TMS418160DZ is described in the TMS418160 data sheet. The TM124BBJ32F SIMM is available in the single-sided BJ-leadless module for use with sockets.

TM248CBJ32F

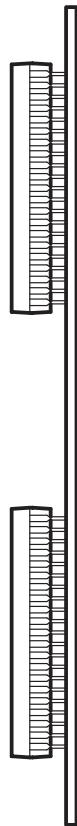
The TM248CBJ32F is an 8-MByte DRAM organized as four times 2097152×8 in a 72-pin SIMM. The SIMM is composed of four TMS418160DZ, 1048576×16 -bit DRAMs, each in a 42-lead plastic SOJ package mounted on a substrate with decoupling capacitors. The TMS418160DZ is described in the TMS418160 data sheet. The TM248CBJ32F SIMM is available in the double-sided BJ-leadless module for use with sockets.

operation

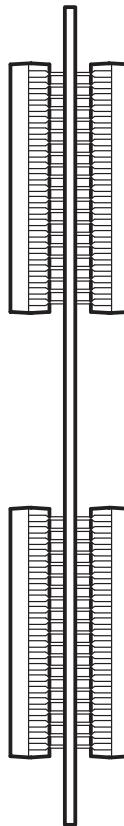
The TM124BBJ32F operates as two TMS418160DZs connected as shown in the functional block diagram and Table 1. The TM248CBJ32F operates as four TMS418160DZs connected as shown in the functional block diagram and Table 1. The common I/O feature dictates the use of early-write cycles to prevent contention on D and Q.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[†] Part numbers in this data sheet are for the gold-tabbed version; the information applies to both gold-tabbed and solder-tabbed versions.


TM124BBJ32F, TM124BBJ32U 1048576 BY 32-BIT DYNAMIC RAM MODULE
TM248CBJ32F, TM248CBJ32U 2097152 BY 32-BIT DYNAMIC RAM MODULE

SMMS661 – JANUARY 1996


BJ SINGLE IN-LINE MEMORY MODULE (TOP VIEW)

TM124BBJ32F
(SIDE VIEW)

TM248CBJ32F
(SIDE VIEW)

PIN NOMENCLATURE

<u>A0</u> – <u>A9</u>	Address Inputs
<u>CAS0</u> – <u>CAS3</u>	Column-Address Strobe
<u>DQ0</u> – <u>DQ31</u>	Data In/Data Out
NC	No Connection
<u>PD1</u> – <u>PD4</u>	Presence Detects
<u>RAS0</u> – <u>RAS3</u>	Row-Address Strobe
V _{CC}	5-V Supply
V _{SS}	Ground
W	Write Enable

PRESENCE DETECT

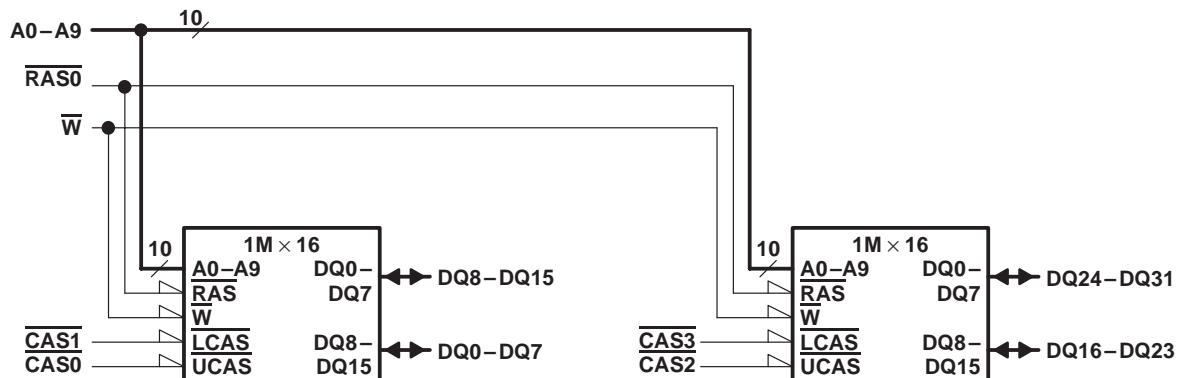
SIGNAL (PIN)		PD1 (67)	PD2 (68)	PD3 (69)	PD4 (70)
TM124BBJ32F	80 ns	V _{SS}	V _{SS}	NC	V _{SS}
	70 ns	V _{SS}	V _{SS}	V _{SS}	NC
	60 ns	V _{SS}	V _{SS}	NC	NC
TM248CBJ32F	80 ns	NC	NC	NC	V _{SS}
	70 ns	NC	NC	V _{SS}	NC
	60 ns	NC	NC	NC	NC

Table 1. Connection Table

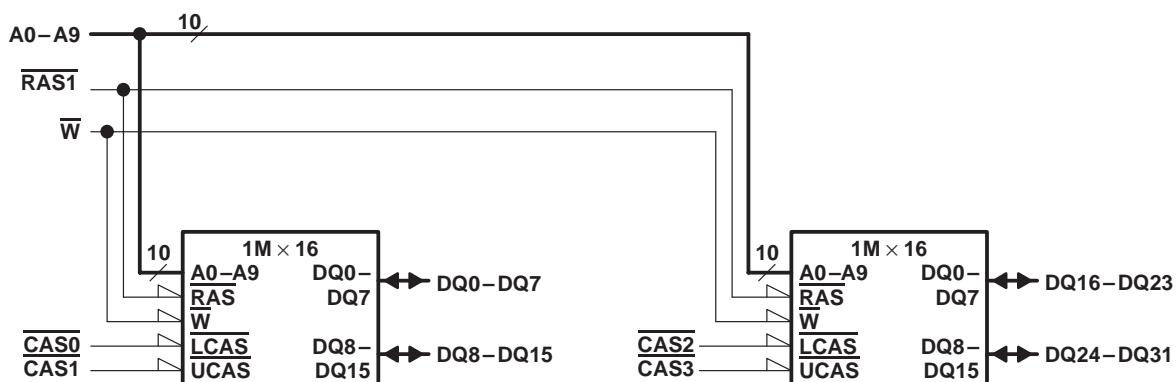
DATA BLOCK	RASx		CASx
	SIDE 1	SIDE 2†	
DQ0–DQ7	RAS0	RAS1	CAS0
DQ8–DQ15	RAS0	RAS1	CAS1
DQ16–DQ23	RAS2	RAS3	CAS2
DQ24–DQ31	RAS2	RAS3	CAS3

† Side 2 applies to the TM248CBJ32F only.

single in-line memory module and components


PC substrate: $1,27 \pm 0,1$ mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage

Bypass capacitors: Multilayer ceramic


Contact area for TM124BBJ32F and TM248CBJ32F: Nickel plate and gold plate over copper

Contact area for TM124BBJ32U and TM248CBJ32U: Nickel plate and tin/lead over copper

functional block diagram (TM124BBJ32F and TM248CBJ32F, side 1)

functional block diagram (TM248CBJ32F, side 2)

TM124BBJ32F, TM124BBJ32U 1048576 BY 32-BIT DYNAMIC RAM MODULE TM248CBJ32F, TM248CBJ32U 2097152 BY 32-BIT DYNAMIC RAM MODULE

SMMS661 – JANUARY 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} (see Note 1)	– 1 V to 7 V
Voltage range on any pin (see Note 1)	– 1 V to 7 V
Short-circuit output current	50 mA
Power dissipation: TM124BBJ32F, TM124BBJ32U	2 W
TM248CBJ32F, TM248CBJ32U	4 W
Operating free-air temperature range, T_A	0°C to 70°C
Storage temperature range, T_{STG}	– 55°C to 125°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to V_{SS} .

recommended operating conditions

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	4.5	5	5.5	V
V_{IH}	High-level input voltage	2.4		6.5	V
V_{IL}	Low-level input voltage (see Note 2)	– 1		0.8	V
T_A	Operating free-air temperature	0		70	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS [‡]	'124BBJ32F-60		'124BBJ32F-70		'124BBJ32F-80		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
V_{OH}	High-level output voltage $I_{OH} = – 5$ mA	2.4		2.4		2.4		V
V_{OL}	Low-level output voltage $I_{OL} = 4.2$ mA		0.4		0.4		0.4	V
I_I	Input current (leakage) $V_{CC} = 5.5$ V, $V_I = 0$ V to 6.5 V, All other pins = 0 V to V_{CC}		± 10		± 10		± 10	µA
I_O	Output current (leakage) $V_{CC} = 5.5$ V, $V_O = 0$ V to V_{CC} , \overline{CAS} high		± 10		± 10		± 10	µA
I_{CC1}	Read- or write-cycle current $V_{CC} = 5.5$ V, Minimum cycle		380		360		340	mA
I_{CC2}	$V_{IH} = 2.4$ V (TTL), After 1 memory cycle, \overline{RAS} and \overline{CAS} high		4		4		4	mA
	$V_{IH} = V_{CC} – 0.2$ V (CMOS), After 1 memory cycle, \overline{RAS} and \overline{CAS} high		2		2		2	mA
I_{CC3}	Average refresh current (\overline{RAS} only or CBR) $V_{CC} = 5.5$ V, Minimum cycle, \overline{RAS} cycling, \overline{CAS} high (\overline{RAS} only); \overline{RAS} low after \overline{CAS} low (CBR)		380		360		340	mA
I_{CC4}	Average page current $V_{CC} = 5.5$ V, $t_{PC} = \text{MIN}$, \overline{RAS} low, \overline{CAS} cycling		200		180		160	mA

[‡] For test conditions shown as MIN/MAX, use the appropriate value specified under recommended operating conditions.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	'248CBJ32F-60		'248CBJ32F-70		'248CBJ32F-80		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
V_{OH}	High-level output voltage	$I_{OH} = -5$ mA		2.4	2.4	2.4	2.4	V
V_{OL}	Low-level output voltage	$I_{OL} = 4.2$ mA		0.4	0.4	0.4	0.4	V
I_I	Input current (leakage)	$V_{CC} = 5.5$ V, $V_I = 0$ V to 6.5 V, All other pins = 0 V to V_{CC}		± 10	± 10	± 10	± 10	μA
I_O	Output current (leakage)	$V_{CC} = 5.5$ V, $V_O = 0$ V to V_{CC} , \overline{CAS} high		± 20	± 20	± 20	± 20	μA
I_{CC1}	Read- or write-cycle current (see Note 3)	$V_{CC} = 5.5$ V, Minimum cycle		384	364	344	344	mA
I_{CC2}	Standby current	$V_{IH} = 2.4$ V (TTL), After 1 memory cycle, RAS and CAS high		8	8	8	8	mA
		$V_{IH} = V_{CC} - 0.2$ V (CMOS), After 1 memory cycle, RAS and CAS high		4	4	4	4	mA
I_{CC3}	Average refresh current (RAS only or CBR) (see Note 3)	$V_{CC} = 5.5$ V, Minimum cycle, RAS cycling, \overline{CAS} high (RAS only); RAS low after \overline{CAS} low (CBR)		760	720	680	680	mA
I_{CC4}	Average page current (see Note 4)	$V_{CC} = 5.5$ V, $t_{PC} = \text{MIN}$, RAS low, \overline{CAS} cycling		204	184	164	164	mA

[†] For test conditions shown as MIN/MAX, use the appropriate value specified under recommended operating conditions.

NOTES: 3. Measured with a maximum of one address change while $\overline{RAS} = V_{IL}$
 4. Measured with a maximum of one address change while $CAS = V_{IH}$

capacitance over recommended ranges of supply voltage and operating free-air temperature, $f = 1$ MHz (see Note 5)

PARAMETER	'124BBJ32F		'248CBJ32F		UNIT
	MIN	MAX	MIN	MAX	
$C_{i(A)}$	Input capacitance, A0–A9		17	27	pF
$C_{i(R)}$	Input capacitance, \overline{RAS} inputs		10	10	pF
$C_{i(C)}$	Input capacitance, \overline{CAS} inputs		12	19	pF
$C_{i(W)}$	Input capacitance, \overline{W}		21	35	pF
$C_{o(DQ)}$	Output capacitance on DQ0–DQ31		10	17	pF

NOTE 5: $V_{CC} = 5$ V ± 0.5 V, and the bias on pins under test is 0 V.

TM124BBJ32F, TM124BBJ32U 1048576 BY 32-BIT DYNAMIC RAM MODULE

TM248CBJ32F, TM248CBJ32U 2097152 BY 32-BIT DYNAMIC RAM MODULE

SMMS661 – JANUARY 1996

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

PARAMETER	'124BBJ32F-60 '248CBJ32F-60		'124BBJ32F-70 '248CBJ32F-70		'124BBJ32F-80 '248CBJ32F-80		UNIT
	MIN	MAX	MIN	MAX	MIN	MAX	
t _{AA} Access time from column address		30		35		40	ns
t _{CAC} Access time from CAS low		15		18		20	ns
t _{RAC} Access time from RAS low		60		70		80	ns
t _{CPA} Access time from column precharge		35		40		45	ns
t _{CLZ} CAS to output in the low-impedance state	0		0		0		ns
t _{OH} Output disable time from start of CAS high	3		3		3		ns
t _{OFF} Output disable time after CAS high (see Note 6)	0	15	0	18	0	20	ns

NOTE 6: t_{OFF} is specified when the output is no longer driven.

timing requirements over recommended ranges of supply voltage and operating free-air temperature

	'124BBJ32F-60 '248CBJ32F-60		'124BBJ32F-70 '248CBJ32F-70		'124BBJ32F-80 '248CBJ32F-80		UNIT
	MIN	MAX	MIN	MAX	MIN	MAX	
t _{RC} Cycle time, random read or write (see Note 7)	110		130		150		ns
t _{RWC} Cycle time, read-write	155		181		205		ns
t _{PC} Cycle time, page-mode read or write (see Notes 7 and 8)	40		45		50		ns
t _{RASP} Pulse duration, page mode, RAS low	60	100 000	70	100 000	80	100 000	ns
t _{RAS} Pulse duration, nonpage mode, RAS low	60	10 000	70	10 000	80	10 000	ns
t _{CAS} Pulse duration, CAS low	15	10 000	18	10 000	20	10 000	ns
t _{CP} Pulse duration, CAS high	10		10		10		ns
t _{RP} Pulse duration, RAS high (precharge)	40		50		60		ns
t _{WP} Pulse duration, W low	10		10		10		ns
t _{AASC} Setup time, column address before CAS low	0		0		0		ns
t _{ASR} Setup time, row address before RAS low	0		0		0		ns
t _{DS} Setup time, data before CAS low	0		0		0		ns
t _{RCS} Setup time, W high before CAS low	0		0		0		ns
t _{CWL} Setup time, W low before CAS high	15		18		20		ns
t _{RWL} Setup time, W low before RAS high	15		18		20		ns
t _{WCS} Setup time, W low before CAS low	0		0		0		ns
t _{CAH} Hold time, column address after CAS low	10		15		15		ns
t _{RHCP} Hold time, RAS high from CAS precharge	35		40		45		ns
t _{DH} Hold time, data after CAS low	10		15		15		ns
t _{RAH} Hold time, row address after RAS low	10		10		10		ns
t _{RCH} Hold time, W high after CAS high (see Note 9)	0		0		0		ns
t _{RRH} Hold time, W high after RAS high (see Note 9)	0		0		0		ns

NOTES: 7. All cycles assume t_T = 5 ns.

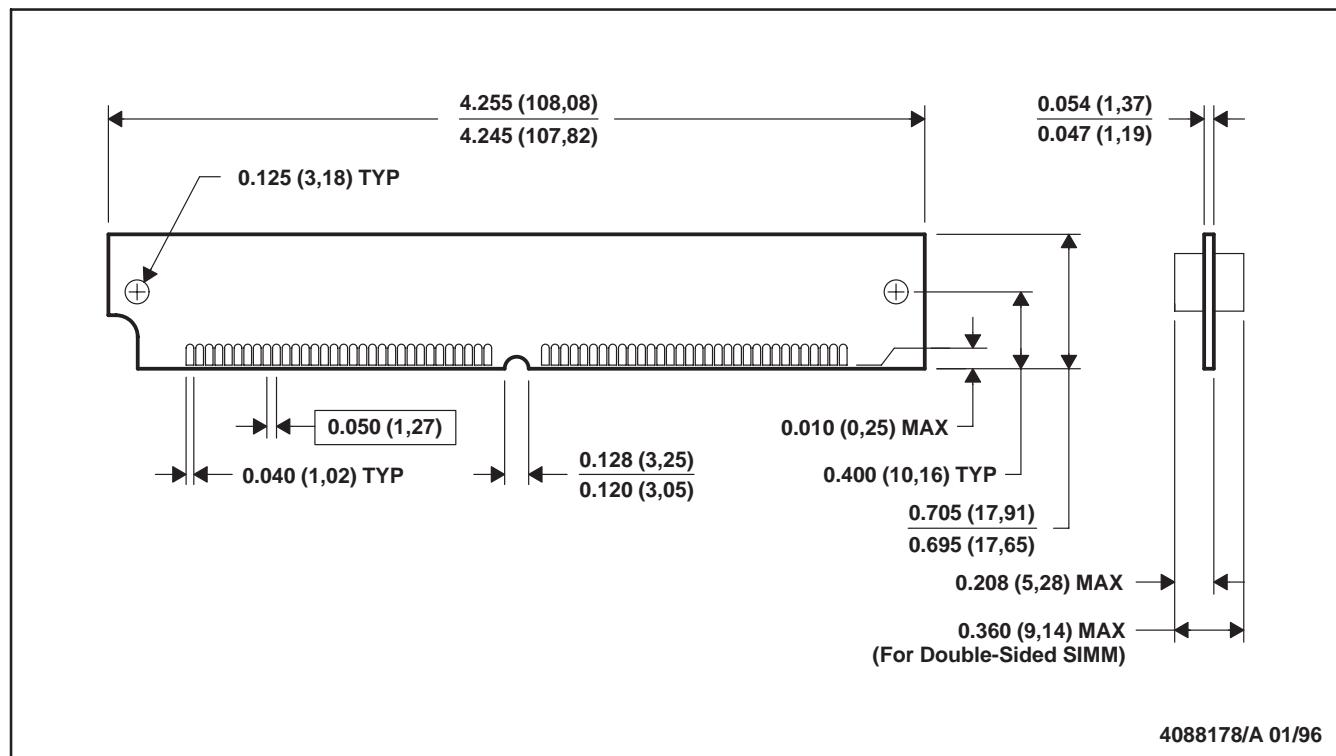
8. To assure t_{PC} min, t_{AASC} should be \geq t_{CP}.

9. Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.

timing requirements over recommended ranges of supply voltage and operating free-air temperature

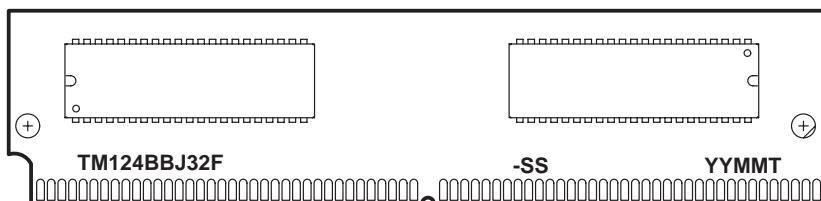
		'124BBJ32F-60 '248CBJ32F-60		'124BBJ32F-70 '248CBJ32F-70		'124BBJ32F-80 '248CBJ32F-80		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
t _{WCH}	Hold time, \overline{W} low after \overline{CAS} low	10		15		15		ns
t _{CHR}	Delay time, \overline{RAS} low to \overline{CAS} high (CBR refresh only)	10		10		10		ns
t _{CRP}	Delay time, \overline{CAS} high to \overline{RAS} low	5		5		5		ns
t _{CSH}	Delay time, \overline{RAS} low to \overline{CAS} high	60		70		80		ns
t _{CSR}	Delay time, \overline{CAS} low to \overline{RAS} low (CBR refresh only)	5		5		5		ns
t _{RAD}	Delay time, \overline{RAS} low to column address (see Note 10)	15	30	15	35	15	40	ns
t _{RAL}	Delay time, column address to \overline{RAS} high	30		35		40		ns
t _{CAL}	Delay time, column address to \overline{CAS} high	30		35		40		ns
t _{RCD}	Delay time, \overline{RAS} low to \overline{CAS} low (see Note 10)	20	45	20	52	20	60	ns
t _{RPC}	Delay time, \overline{RAS} high to \overline{CAS} low (CBR only)	0		0		0		ns
t _{RSH}	Delay time, \overline{CAS} low to \overline{RAS} high	15		18		20		ns
t _{REF}	Refresh time interval			16		16		16 ms
t _T	Transition time	3	30	3	30	3	30	ns

NOTE 10: The maximum value is specified only to assure access time.


TM124BBJ32F, TM124BBJ32U 1048576 BY 32-BIT DYNAMIC RAM MODULE
TM248CBJ32F, TM248CBJ32U 2097152 BY 32-BIT DYNAMIC RAM MODULE

SMMS661 – JANUARY 1996

MECHANICAL DATA


BJ (R-PSIM-N72)

SINGLE-IN-LINE MEMORY MODULE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

device symbolization (TM124BBJ32F illustrated)

YY = Year Code
MM = Month Code
T = Assembly Site Code
-SS = Speed Code

NOTE: Location of symbolization may vary.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated