

1100-MHz Twin PLL

Description

The IC U2782B is a low-power twin PLL manufactured with TEMIC Semiconductors' advanced UHF process. The maximum operating frequency is 1100 MHz for both PLLs. The device features a wide supply-voltage range from 2.7 V to 5.5 V. A prescaler 64/65 and power-down function for both PLLs are integrated. The twin PLL is de-

Features

- Very low current consumption (typical 3 V/11 mA)
- Supply-voltage range 2.7 to 5.5 V
- Maximum input frequency: 1100 MHz for both PLLs
- 2 pins for separate power-down functions
- Output for PLL lock status
- Prescaler 64/65 for both inputs
- SSO20 package
- ESD protected according to MIL-STD 833 method 3015 cl.2

signed for CT1, IS54, JDC etc applications.

Electrostatic sensitive device. Observe precautions for handling.

Benefits

- Low current consumption leads to extended talk time
- Twin PLL saves costs and space
- One foot print for all TEMIC Semiconductors' twin PLLs saves design-in time

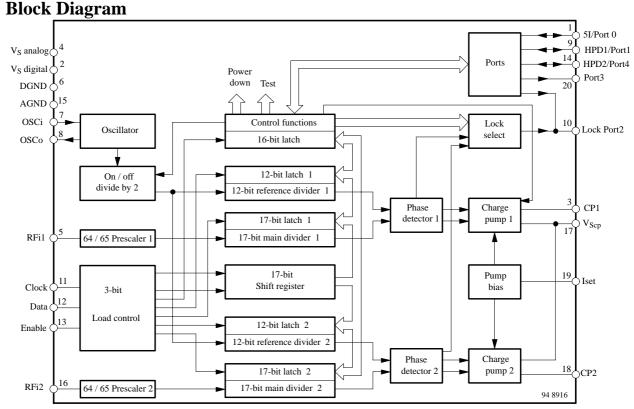
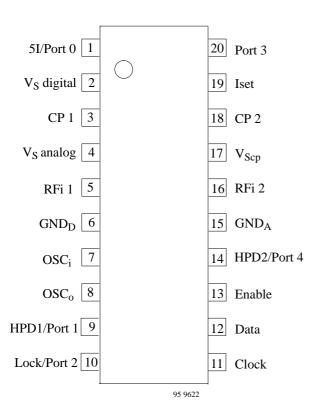


Figure 1. Block diagram


Rev. A4, 19-May-99

Ordering Information

Extended Type Number	Package	Remarks
U2782B-AFS	SSO20	Tube, MOQ 830 PCS
U2782B-AFSG3	SSO20	Taped and reeled, MOQ 4000 pcs

Pin Description

Figure 2.	Pinning
-----------	---------

Pin	Symbol	Function
1	5I/Port 0	5I – Control input / o.c.output
2	V _S digital	Power supply digital section
3	CP 1	Charge-pump output of synthesizer 1
4	V _S analog	Power supply analog section
5	RFi 1	RF divider input synthesizer
6	GND_D	Ground for digital section
7	OSCi	Reference-oscillator input
8	OSCo	Reference-oscillator output
9	HPD 1/	Hardware power-down input of
	Port 1	synthesizer 1 / o.c.output
10	Lock/	Lock output / o.c.output /
	Port 2	testmode output
11	Clock	3-wire bus: serial clock input
12	Data	3-wire bus: serial data input
13	Enable	3-wire bus: serial enable input
14	HPD 2/	Hardware power-down input of
	Port 4	synthesizer 2 / o.c.output
15	GND_A	Ground for analog section
16	RFi 2	RF divider input synthesizer 2
17	V_{Scp}	Charge-pump supply voltage
18	CP 2	Charge-pump output of synthesizer 2
19	Iset	Reference pin for charge-pump currents
20	Port 3	o.c.output

Absolute Maximum Ratings

	Parameters	Symbol	Value	Unit
Supply voltage	Pins 2, 4 and 17	V_{S}, V_{Scp}	6	V
Input voltage	Pins 1, 3, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18 and 20	V _i	0 to V_S	V
Junction temperatur	re	T _i	125	°C
Storage temperature	erange	$T_{\rm stg}$	-40 to + 125	°C

Operating Range

	Parameters	Symbol	Value	Unit
Supply voltage	Pins 2, 4 and 17	V_{S}, V_{Scp}	2.7 to 5.5	V
Ambient temperature	e range	T _{amb}	-40 to +85	°C

2 (9) Rev. A4, 19-May-99

Thermal Resistance

	Parameters	Symbol	Value	Unit
Junction ambient	SSO20	R _{thja}	140	K/W

Electrical Characteristics

 T_{amb} = 25 °C, V_{S} = 2.7 to 5.5 V, V_{Scp} = 5 V, unless otherwise specified

DC supply Supply current $V_S = 3$ V, SPD1 = SPD2 = 0 I_S 0.5 0.8 1.1 mA Supply current $V_S = 3$ V, SPD1 = SPD2 = 1 I_S 7 11 13 mA Supply current CP $V_{CP} = 5$ V, PLL in lock condition I_{CP} 0 1 10 μA PLL 1 + PLL2 Input voltage $f_{RFi1} = 200 - 1100$ MHz V_{RFi1} 20 200 mV _{RMS} Scaling factor prescaler S_{PSC} 64/65 2047 Scaling factor main S_S 0 63 scaling factor swallow S_S 0 63 Counter Reference contlet S_S 0 63 Reference oscillator Recommended crystal series resistance S_S 5 4096 External reference input frequency $RF/2 = 0$ 1 20 MHz external reference input amplitude AC -coupled sinewave OSC_i 100 mV_{RMS} ampl		~~r	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DC supply						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Supply current	$V_S = 3 \text{ V}, \text{ SPD1} = \text{SPD2} = 0$	I_{S}	0.5	0.8	1.1	mA
$ \begin{array}{ c c c c c c c c } \hline \text{PLL 1 + PLL2} \\ \hline \text{Input voltage} & f_{RFi1} = 200 - 1100 \text{MHz} & V_{RFi1} & 20 & 200 & mV_{RMS} \\ \hline \text{Scaling factor prescaler} & S_{PSC} & 64/65 \\ \hline \text{Scaling factor main} & S_{M} & 5 & 2047 \\ \hline \text{counter} & S_{S} & 0 & 63 \\ \hline \text{counter} & S_{S} & 0 & 63 \\ \hline \text{counter} & S_{R} & 5 & 4096 \\ \hline \text{Reference oscillator} \\ \hline \text{Recommended crystal} & 10 & 200 & \Omega \\ \hline \text{Reference oscillator} \\ \hline \text{Recommended crystal} & 10 & 200 & \Omega \\ \hline \text{Refreence input frequency} & AC-coupled sinewave & OSC_{i} & 1 & 20 & MHz \\ \hline \text{RF}/2 = 0 & 1 & 20 & MHz \\ \hline \text{RF}/2 = 1 & 1 & 40 & MHz \\ \hline \text{amplitude} & AC-coupled sinewave & OSC_{i} & 100 & mV_{RMS} \\ \hline \text{amplitude} & V_{iH} & 1.5 & V \\ \hline \text{Logic input levels (Clock, Data, Enable, HPD1, HPD2, 51)} \\ \hline \text{High input level} & V_{iH} & 1.5 & V \\ \hline \text{Low input current} & I_{iH} & -5 & 5 & \mu A \\ \hline \text{Logic output levels (Port 0, 1, 2, 3, 4, Lock)} \\ \hline \text{Leakage current} & V_{OH} = 5.5 V & I_{L} & 10 & \mu A \\ \hline \text{Saturation voltage} & I_{OL} = 0.5 \text{mA} \\ \hline \text{Charge-pump output (R}_{\text{Set}} = 10 k\Omega) \\ \hline \text{Source current} & V_{CP} \leq V_{SCp}/2 & \text{PLL2} \\ \hline \text{S1 = L} & \text{PLL1} & I_{\text{sink}} & -1 & -1 \\ \hline \text{S1 = L} & \text{PLL1} & I_{\text{sink}} & 0.2 & mA \\ \hline \text{S1 = L} & \text{PLL1} & I_{\text{sink}} & 0.2 & mA \\ \hline \text{MA} & 1 & 0.2 & mA \\ \hline \end{array}$	Supply current	$V_S = 3 \text{ V}, \text{ SPD1} = \text{SPD2} = 1$	I_{S}	7	11	13	mA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Supply current CP		I_{CP}	0	1	10	μА
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PLL 1 + PLL2		•	•	•	•	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input voltage	$f_{RFi1} = 200 - 1100 \text{ MHz}$	V _{RFi1}	20		200	mV_{RMS}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Scaling factor prescaler		S _{PSC}		64/65	•	
$ \begin{array}{ c c c c c c c } \hline \text{Reference counter} & S_R & 5 & 4096 \\ \hline \textbf{Reference oscillator} \\ \hline \textbf{Recommended crystal} \\ \text{series resistance} \\ \hline \textbf{External reference input} \\ \hline \textbf{External reference input} \\ \text{frequency} & RF/2 = 0 \\ RF/2 = 1 & 1 & 20 \\ RF/2 = 1 & 1 & 40 \\ \hline \textbf{MHz} \\ \hline \textbf{External reference input} \\ \hline \textbf{and } & AC\text{-coupled sinewave} \\ \hline \textbf{RF}/2 = 1 & 1 & 40 \\ \hline \textbf{MHz} \\ \hline \textbf{External reference input} \\ \hline \textbf{and } & AC\text{-coupled sinewave} & OSC_i \\ \hline \textbf{RF}/2 = 1 & 1 & 40 \\ \hline \textbf{MHz} \\ \hline \textbf{External reference input} \\ \hline \textbf{and } & AC\text{-coupled sinewave} & 2) & OSC_i & 100 \\ \hline \textbf{mV}_{RMS} \\ \hline \textbf{MHz} \\ \hline \textbf{External reference input} \\ \hline \textbf{AC-coupled sinewave} & 2) & OSC_i & 100 \\ \hline \textbf{mV}_{RMS} \\ \hline \textbf{MHz} \\ \hline \textbf{External reference input} \\ \hline \textbf{AC-coupled sinewave} & 2) & OSC_i & 100 \\ \hline \textbf{mV}_{RMS} \\ \hline \textbf{MHz} \\ \hline \textbf{External reference input} \\ \hline \textbf{AC-coupled sinewave} & 2) & OSC_i & 100 \\ \hline \textbf{mV}_{RMS} \\ \hline \textbf{MHz} \\ \hline \textbf{External reference input} \\ \hline \textbf{AC-coupled sinewave} & 2) & OSC_i & 100 \\ \hline \textbf{mV}_{RMS} \\ \hline \textbf{MHz} \\ \hline \textbf{External reference input} \\ \hline \textbf{AC-coupled sinewave} & 2) & OSC_i & 100 \\ \hline \textbf{mV}_{RMS} \\ \hline \textbf{MHz} \\ \hline \textbf{MHz} \\ \hline \textbf{MIT} \\ \hline \textbf$	Scaling factor main counter		S _M	5		2047	
$ \begin{array}{ c c c c c } \hline \textbf{Reference oscillator} \\ \hline \textbf{Recommended crystal} \\ \text{series resistance} \\ \hline \textbf{External reference input} \\ \hline \textbf{REf/2} = 0 \\ \hline \textbf{RF/2} = 1 \\ \hline \textbf{RF/2} = 1 \\ \hline \textbf{AC-coupled sinewave} \\ \hline \textbf{RF/2} = 1 \\ \hline \textbf{AC-coupled sinewave} \\ \hline \textbf{RF/2} = 1 \\ \hline \textbf{AC-coupled sinewave} \\ \hline \textbf{RF/2} = 1 \\ \hline \textbf{AC-coupled sinewave} \\ \hline \textbf{AC-coupled sinewave} \\ \hline \textbf{OSC}_i \\ \hline \textbf{100} \\ \hline \textbf{mV}_{RMS} \\ \hline \textbf{amplitude} \\ \hline \textbf{Lexiternal reference input amplitude} \\ \hline \textbf{AC-coupled sinewave} \\ \hline \textbf{AC-coupled sinewave} \\ \hline \textbf{OSC}_i \\ \hline \textbf{100} \\ \hline \textbf{mV}_{RMS} \\ \hline \textbf{MHz} \\ \hline \textbf{SCapply tevels (Clock, Data, Enable, HPD1, HPD2, SI)} \\ \hline \textbf{High input levels (Clock, Data, Enable, HPD1, HPD2, SI)} \\ \hline \textbf{High input level} \\ \hline \textbf{V}_{iH} & 1.5 \\ \hline \textbf{Low input level} \\ \hline \textbf{V}_{iL} & 0 \\ \hline \textbf{V}_{iL} & 0 \\ \hline \textbf{0.4} & V \\ \hline \textbf{High input current} \\ \hline \textbf{I}_{iH} & -5 \\ \hline \textbf{5} & \mu A \\ \hline \textbf{Low input current} \\ \hline \textbf{Leakage current} \\ \hline \textbf{V}_{OH} = 5.5 \text{ V} \\ \hline \textbf{I}_{L} \\ \hline \textbf{Saturation voltage} \\ \hline \textbf{I}_{OL} = 0.5 \text{ mA} \\ \hline \textbf{V}_{CP} \leq V_{SCp}/2 \\ \hline \textbf{SI}_{IL} \\ \hline \textbf{SI}_{IL} \\ \hline \textbf{SI}_{IL} \\ \hline \textbf{SI}_{IL} \\ \hline \textbf{I}_{Source} \\ \hline \textbf{SI}_{IL} \\ \hline \textbf{I}_{Source} \\ \hline \textbf{SI}_{IL} \\ \hline \textbf{I}_{Source} \\ \hline \textbf{I}_{IL} \\ \hline$	Scaling factor swallow counter		S _S	0		63	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reference counter		S_R	5		4096	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reference oscillator		•	•	•	•	•
External reference input frequency $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Recommended crystal series resistance			10		200	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	External reference input frequency	RF/2 = 0	OSCi	_			MHz
High input level V _{iH} 1.5 V V V V V V V V V	External reference input amplitude	AC-coupled sinewave ²⁾	OSCi		100		mV _{RMS}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Logic input levels (Clock,	Data, Enable, HPD1, HPD2,	5 I)	•	•	'	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	High input level		V _{iH}	1.5			V
Low input current I_{iL} -5 5 μA Logic output levels (Port 0, 1, 2, 3, 4, Lock) I_{L}	Low input level			0		0.4	V
Logic output levels (Port 0, 1, 2, 3, 4, Lock) Leakage current $V_{OH} = 5.5 \text{ V}$ I_L 10 μA Saturation voltage $I_{OL} = 0.5 \text{ mA}$ V_{SL} 0.4 V Charge-pump output ($R_{set} = 10 \text{ k}\Omega$) $V_{CP} \le V_{Scp}/2$ PLL2 -1 -0.2 mA Source current $V_{CP} \le V_{Scp}/2$ PLL1 I_{source} -0.2 mA Sink current $V_{CP} \le V_{Scp}/2$ PLL2 1 mA Sink current $V_{CP} \le V_{Scp}/2$ PLL1 I_{sink} 0.2 mA Si = H PLL1 I_{sink} 0.2 mA	High input current		I _{iH}	-5		5	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Low input current		I_{iL}	-5		5	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Logic output levels (Port	0, 1, 2, 3, 4, Lock)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Leakage current	$V_{OH} = 5.5 \text{ V}$	I_{L}			10	μΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Saturation voltage					0.4	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Charge-pump output (R _{se}						
Sink current $ \begin{array}{c cccc} V_{CP} \leq V_{Scp}/2 & PLL2 & & 1 \\ 5I = L & PLL1 & I_{sink} & 0.2 & mA \\ 5I = H & PLL1 & & 1 \end{array} $	Source current	5I = L PLL1	I _{source}		-0.2		mA
Leakage current $V_{CP} \le V_{Scp}/2$ I_L ± 5 nA	Sink current	$ \begin{array}{ccc} V_{CP} \leq V_{Scp}/2 & & PLL2 \\ 5I = L & & PLL1 \end{array} $	I _{sink}		1 0.2		mA
	Leakage current	$V_{CP} \leq V_{Scp}/2$	$I_{ m L}$		±5		nA

 $^{^{1)}}$ RMS voltage at 50 $\Omega; \ ^{2)}$ OSC $_{o}$ is open if an external reference frequency is applied

Rev. A4, 19-May-99

Serial Bus Programming

Reference and programmable counters can be programmed by the 3-wire bus (Clock, Data and Enable). After setting the enable signal to high condition, the data status is transfered bit by bit on the rising edge of the clock signal into the shift register, starting with the MSB bit. When the enable signal has returned to low condition the programmed information is loaded according to the address bits (last three bits) into the addressed latch. Additional leading bits are ignored and there is no check made how many clock pulses arrived during enable high condition. In power-down mode the 3-wire bus remains active and the IC can be programmed.

Data is entered with the most significant bit first. The leading bits deliver the divider or control information. The trailing three bits are the address field. There are six different addresses used. The trailing address bits are decoded upon the falling edge of the enable signal. The internal load pulse starts with the falling edge of the enable signal and ends with the falling edge of the clock signal. Therefore, a minimum holdtime clock-enable t_{HCE} is required.

Bit Allocation

MSB																			LSB
Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	Bit 9	Bit 10	Bit 11	Bit 12	Bit 13	Bit 14	Bit 15	Bit 16	Bit 17	Bit 18	Bit 19	Bit 20
	•	•	•	•	•		D	ata bit	s		•		•				Ad	dress b	oits
D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	A2	A1	A0
PLL1 M10	M9	M8	M7	M6	M5	M4	М3	M2	M1	M 0	S5	S4	S3	S2	S1	PLL1 S0	0	0	1
					PLL1 R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	PLL1 R0	0	1	0
PLL2 M10	M9	M8	M7	M6	M5	M4	M3	M2	M1	M0	S5	S4	S3	S2	S1	PLL2 S0	0	1	1
					PLL2 R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	PLL2 R0	1	0	0
	RF/ 2	Test	5IP	TRI 2	TRI 1	PS2	PS1	Н2Р	H1P	LP B	LPA	P4	P3	P2	P1	P0	1	0	1
														SP	SP	SP	_		
														D 5I	D 2	D 1	1	1	0

Scaling Factors

S0 ... S5: These bits are setting the swallow counter
$$S_S$$
.
$$T_S = S0*2^0 + S1*2^1 + ... + S4*2^4 + S5*2^5$$
 allowed scaling factors for S_S : 0 ... 63, $T_S < T_M$

M0 ... M10: These bits are setting the main counter
$$S_M$$
.
$$T_M = M0*2^0 + M1*2^1 + ... + M9*2^9 + M10*2^{10}$$
 allowed scaling factors for S_M : 5 ... 2047

$$S_{PGD}$$
: Total scaling factor of the programmable counter:
$$S_{PGD} = (64*S_M) + S_S \qquad Condition: S_S < S_M$$

R0 ... R11: These bits are setting the reference counter
$$S_R$$
.
$$S_R = R0*2^0 + ... + R10*2^{10} + R11*2^{11}$$
 allowed scaling factors for S_R : 5 ... 4096

S_{RFD}: Total scaling factor of the reference counter:

$$RF/2 = 1$$
: $S_{RFD} = 2 * S_{R}$

$$RF/2 = 0$$
: $S_{RFD} = S_R$

Serial Programming Bus

Control Bits:

P0 ... P4: o.c. output ports (1 = high impedance)

LPA, LPB: selection of P2 output or locksignal function of Pin 10

TEST	LPA	LPB	
0	0	0	o.c. output P2
0	0	1	locksignal of synthesizer 2
0	1	0	locksignal of synthesizer 1
0	1	1	wiredor locksignal of both synthesizer

H1P, H2P: selection of P1/4 output or hardware power-down input of synthesizer 1/2 (0 = Port / 1 = HPD)

5IP: selection of P0 output or high-current switching input for the charge-pump current of synthesizer 1 (0 = Port / 1 = charge-pump 1 current switch input)

PS1, PS2: phase selection of synthesizer 1 and synthesizer 2 (1 = normal / 0 = invers)

	PS-PLL1/2 = 1	PS-PLL1/2=0
	CP1/2	CP1/2
$f_R > f_P$	$ m I_{sink}$	I _{source}
$f_R < f_P$	I _{source}	$I_{ m sink}$
$f_{\mathbf{R}} = f_{\mathbf{P}}$	0	0

RF/2: divide-by-2 prescaler for reference divider (0 = off / 1 = on)

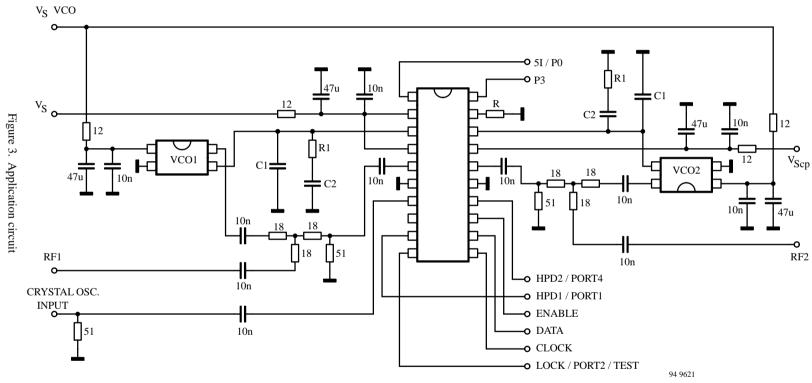
SPD1, SPD2: software power-down bit of synthesizer 1/2 (0 = powe down / 1 = power up)

5I: software switch for the charge-pump current of synthesizer 1 (0 = low current / 1 = high current)

TRI1, TRI2: enables tristate for the charge pump of synthesizer 1/2 (0 = normal / 1 = tristate)

TEST: enables counter testmode (0 = disabled / 1 = enabled)

TEST	LPA	LPB	PS1	PS2	Testsignal at pin 10
1	1	0	1	X	RFD1
1	1	0	0	X	PGD1
1	0	1	X	1	RFD2
1	0	1	X	0	PGD2


To operate the software power-down mode, the following condition must be set: HXP = 0; power up and power down will be set by SPDX = 1 (on) and SPDX = 0 (off).

To operate the hardware power-down mode, the following condition must be set: HXP = 1; SPDX = 1; power up and power down will be set by high and low state at the hardware power-down Pins 9/14.

High current of charge-pump synthesizer 1 is active when 5I = 1 and if 5IP = 1 the charge-pump current control input Pin 1 is in high state.

Rev. A4, 19-May-99 5 (9)

Application Circuit

Timing Diagram Serial Bus

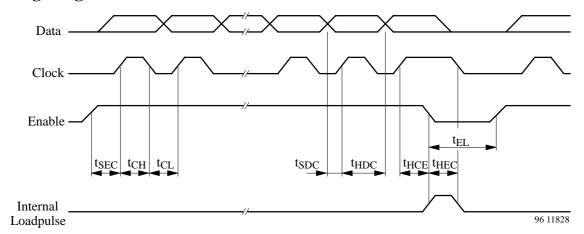


Figure 4.

Table 1. Timing

Parameters	Symbol	Value	Unit
Clock-High Time	t_{CH}	>750	ns
Clock-Low Time	t_{CL}	>350	ns
Clock Period	t_{PER}	>1100	ns
Set-up Time Clock Data to Clock	t_{SDC}	>100	ns
Hold Time Data to Clock	t _{HDC}	>400	ns
Hold Time Clock to Enable	t_{HCE}	>400	ns
Hold Time Enable to Clock	t _{HEC}	>400	ns
Enable Low Time	$t_{ m EL}$	>200	ns
Set-up Time Enable to Clock	t _{SEC}	>4000	ns

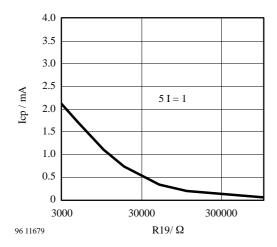


Figure 5. Charge-pump characteristics

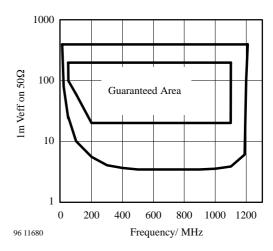


Figure 6. Input sensitivity of PLL1 and PLL2

Rev. A4, 19-May-99 7 (9)

Input Impedance of PLL1 and PLL2

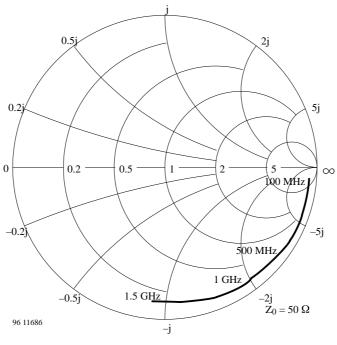
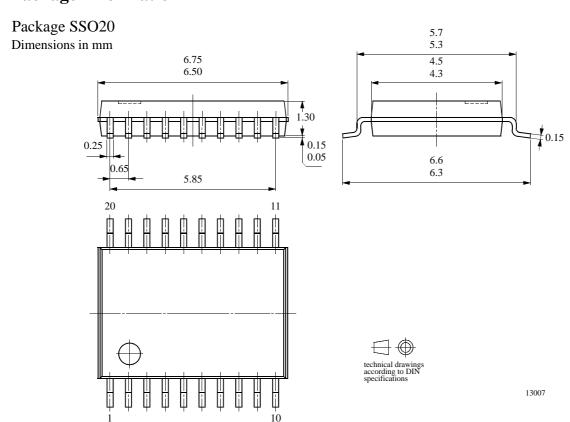



Figure 7.

Package Information

8 (9) Rev. A4, 19-May-99

Ozone Depleting Substances Policy Statement

It is the policy of **TEMIC Semiconductor GmbH** to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423

Rev. A4, 19-May-99