## INTEGRATED CIRCUITS



Preliminary specification

1999 Dec 17

IC17 Data Handbook



HILIP

Philips Semiconductors

### SA3603

#### DESCRIPTION

The SA3603 is an integrated Low-Noise Amplifier (LNA) and mixer designed in a 30 GHz f<sub>T</sub> advanced BICMOS process, Qubic3, for high-performance low power Cellular-band communication systems. The LNA has a 1.6 dB noise figure at 881 MHz with 17.5 dB gain and an IIP3 intercept of -4 dBm. The single-ended input, single balanced mixer has a 9.5 dB noise figure with 7.5 dB gain and IIP3 of +6.0 dBm at 881 MHz.

#### **FEATURES**

- Integrated LNA output matching
- Excellent gain stability versus temperature and supply voltage
- LNA, mixer and LO buffer power down capability

#### **APPLICATIONS**

- IS-136 Standard systems
- Wireless radios

#### **ORDERING INFORMATION**

#### **PIN CONFIGURATION**



Figure 1. Pin Configuration

| DESCRIPTION                                                     | TEMPERATURE RANGE | ORDER CODE | DWG # |
|-----------------------------------------------------------------|-------------------|------------|-------|
| 16-Pin Thin Shrink Small Outline Package (Surface-mount, TSSOP) | –40 to +85°C      | SA3603 DH  |       |

### SA3603

#### **PINOUT DEFINITION**



#### Figure 2. Pinout definition

### **PIN DESCRIPTION**

| PIN NUMBER      | SYMBOL        | FUNCTION                 |
|-----------------|---------------|--------------------------|
| 1               | LO_IN         | VCO input                |
| 2               | VCC LO BUFFER | LO buffer supply voltage |
| 3               | LO OUT        | VCO output               |
| 4, 6, 8, 11, 13 | GND           | Ground                   |
| 5               | VCC LNA       | LNA supply voltage       |
| 7               | LNA RF IN     | LNA input                |
| 9               | LNA GAIN SEL  | LNA gain select          |
| 10              | LNA RF OUT    | LNA output               |
| 12              | MIXER RF IN   | Mixer input              |
| 14              | MIXER IF OUT+ | Mixer output +           |
| 15              | MIXER IF OUT- | Mixer output –           |
| 16              | VCC MIXER     | Mixer supply voltage     |

SA3603

#### **ABSOLUTE MAXIMUM RATINGS**

| SYMBOL            | PARAMETER                                                                                   | RATING                          | UNITS |
|-------------------|---------------------------------------------------------------------------------------------|---------------------------------|-------|
| V <sub>CC</sub>   | Supply voltage <sup>1</sup>                                                                 | –0.3 to +3.5                    | V     |
| V <sub>IN</sub>   | Voltage applied to any other pin                                                            | –0.3 to (V <sub>CC</sub> + 0.3) | V     |
| PD                | Power dissipation, T <sub>amb</sub> = 25°C (still air) <sup>2</sup><br>16-Pin Plastic TSSOP | TBD                             | mW    |
| T <sub>JMAX</sub> | Maximum operating junction temperature                                                      | 150                             | °C    |
| P <sub>MAX</sub>  | Maximum power input/output                                                                  | +20                             | dBm   |
| T <sub>STG</sub>  | Storage temperature range                                                                   | -65 to +150                     | °C    |

NOTES:

Transients exceeding 3.6 V on V<sub>CC</sub> pin may damage product.
Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, θ<sub>JA</sub>: 16-Pin TSSOP = TBD°C/W
Pins 14 and 15 are ESD sensitive (mixer outputs).

#### **RECOMMENDED OPERATING CONDITIONS**

| SYMBOL           | PARAMETER                           | RATING     | UNITS |
|------------------|-------------------------------------|------------|-------|
| V <sub>CC</sub>  | Supply voltage                      | 2.7 to 3.3 | V     |
| T <sub>amb</sub> | Operating ambient temperature range | -40 to +85 | °C    |

#### DC ELECTRICAL CHARACTERISTICS

 $V_{CC}$  = +2.8 V,  $T_{amb}$  = 25°C; unless otherwise stated.

| SYMPOL            | DADAMETED          | TEST CONDITIONS |      |     |                       |       |
|-------------------|--------------------|-----------------|------|-----|-----------------------|-------|
| STNIBOL           | FARAMETER          |                 | MIN  | ТҮР | MAX                   | UNITS |
|                   |                    | LO buffer       |      | 6   |                       | mA    |
| I <sub>CC</sub>   | Supply current     | LNA high gain   |      | 6   |                       | mA    |
|                   |                    | Mixer           |      | 12  |                       | mA    |
| V <sub>IH</sub>   | Logic 1 level      |                 | 2.0  |     | V <sub>CC</sub> + 0.3 | V     |
| V <sub>IL</sub>   | Logic 0 level      |                 | -0.3 |     | 0.5                   | V     |
| I <sub>BIAS</sub> | Input bias current | Logic 1 or 0    | -5   |     | +5                    | μÂ    |

SA3603

### AC ELECTRICAL CHARACTERISTICS

 $V_{CC}$  = +2.8 V;  $f_{RF}$  = 881 MHz,  $f_{VCO}$  = 991 MHz;  $T_{amb}$  = 25°C; unless otherwise stated.

| SYMBOL              | DADAMETED                     | TEST CONDITIONS                            | LIMITS |             |      |             |      |       |
|---------------------|-------------------------------|--------------------------------------------|--------|-------------|------|-------------|------|-------|
|                     | PARAMETER                     |                                            | MIN.   | <b>–3</b> σ | TYP  | <b>+3</b> σ | MAX. | UNITS |
| Overall System      |                               |                                            |        |             |      |             |      |       |
| G <sub>SYS</sub>    | System gain                   | LNA + Mixer (excluding filter<br>loss)     | 22     |             |      |             |      | dB    |
| Low Noise           | Amplifier                     |                                            |        |             | _    | _           | _    |       |
| f <sub>RF</sub>     | RF input frequency range      |                                            | 869    |             |      |             | 894  | MHz   |
| S <sub>21</sub>     | Gain                          |                                            |        |             | 17.5 |             |      | dB    |
| S <sub>21</sub>     | Gain in power-down mode       |                                            |        |             | 2    |             |      | dB    |
| S <sub>12</sub>     | Reverse isolation             | @ 881 MHz                                  |        |             | TBD  |             |      | dB    |
| S <sub>11</sub>     | Input return loss             | 50 $\Omega$ system                         |        |             | 10   |             |      | dB    |
| S <sub>22</sub>     | Output return loss            | 50 $\Omega$ system                         |        |             | 10   |             |      | dB    |
| P <sub>-1dB</sub>   | Input 1 dB gain compression   |                                            |        |             | -19  |             |      | dBm   |
| IIP3                | Input third order intercept   | P <sub>RFin</sub> = -35 dBm, 60 kHz offset |        |             | -4   |             |      | dBm   |
| NF                  | Noise figure                  |                                            |        |             | 1.6  |             |      | dB    |
| t <sub>ON/OFF</sub> | Turn on/off time <sup>1</sup> |                                            |        |             |      |             | 100  | μs    |
| Mixer               | •                             |                                            |        | -           |      | -           |      |       |
| f <sub>RF</sub>     | RF input frequency range      |                                            | 869    |             |      |             | 894  | MHz   |
| f <sub>IF</sub>     | IF input frequency range      |                                            | 70     |             | 110  |             | 200  | MHz   |
| PG <sub>C</sub>     | Power conversion gain         | f <sub>IF</sub> = 110 MHz                  |        |             | 7.5  |             |      | dB    |
| S <sub>11M</sub>    | Input match                   | Ext. impedance matching req.               |        |             | -10  |             |      | dB    |
| NF <sub>M</sub>     | SSB noise figure              |                                            |        |             | 9.5  |             |      | dB    |
| P <sub>-1dB</sub>   | Input 1 dB gain compression   |                                            |        |             | -15  |             |      | dBm   |
| IIP3 <sub>M</sub>   | Input third order intercept   | P <sub>RFin</sub> = -27 dBm, 60 kHz offset |        |             | 6    |             |      | dBm   |
| IIP <sub>2INT</sub> | Input second order intercept  |                                            |        |             | 26   |             |      | dBm   |
| P <sub>RFM-IF</sub> | RF feedthrough                | P <sub>RFin</sub> = -35 dBm                |        |             | TBD  |             |      | dBm   |
| t <sub>ON/OFF</sub> | Turn on/off time <sup>1</sup> |                                            |        |             |      |             | 100  | μs    |
| LO Buffer           |                               |                                            |        |             |      |             |      |       |
| f <sub>LO</sub>     | Input frequency range         |                                            | 939    |             |      |             | 1094 | MHz   |
| P <sub>IN</sub>     | Input power                   |                                            | -2     |             | 0    |             | +2   | dBm   |
| P <sub>OUT</sub>    | Output power                  |                                            |        |             | 0    |             |      | dBm   |
| S <sub>11</sub>     | Input return loss             | 50 $\Omega$ system                         |        |             | 10   |             |      | dB    |
| S <sub>22</sub>     | Output return loss            | 50 $\Omega$ system                         |        |             | 10   |             |      | dB    |
| P <sub>LO-IF</sub>  | LO feedthrough to IF          |                                            |        |             | TBD  |             |      | dBm   |
| P <sub>LO-RFM</sub> | LO to mixer input feedthrough |                                            |        |             | TBD  |             |      | dBm   |
| P <sub>LO-RF</sub>  | LO to LNA input feedthrough   |                                            |        |             | TBD  |             |      | dBm   |
|                     | Harmonic content              |                                            |        |             | -20  |             |      | dB    |
| ton/off             | Turn on/off time <sup>1</sup> |                                            |        |             |      |             | 100  | μs    |

NOTE:

1. External circuit dependent

SA3603



SA3603

NOTES

### SA3603

#### Data sheet status

| Data sheet                | Product       | Definition <sup>[1]</sup>                                                                                                                                                                                                                                        |
|---------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| status                    | status        |                                                                                                                                                                                                                                                                  |
| Objective specification   | Development   | This data sheet contains the design target or goal specifications for product development.<br>Specification may change in any manner without notice.                                                                                                             |
| Preliminary specification | Qualification | This data sheet contains preliminary data, and supplementary data will be published at a later date.<br>Philips Semiconductors reserves the right to make changes at any time without notice in order to<br>improve design and supply the best possible product. |
| Product specification     | Production    | This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.                                                             |

[1] Please consult the most recently issued datasheet before initiating or completing a design.

#### Definitions

**Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

**Application information** — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

**Right to make changes** — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 2000 All rights reserved. Printed in U.S.A.

> Date of release: 04-00 9397 750 07035

Document order number:

9397 750 07035

Let's make things better.



