

SANYO Semiconductors DATA SHEET

LA5647H — Monolithic Linear IC For Car AV Equipment Multifunction Multi-Voltage Power Supply

Overview

The LA5647H power supply IC provides a set of functions optimal for car audio applications. These functions include regulators, emitter-follower outputs, open-collector outputs, and a reset function.

Features

- 5V/50mA regulator (always on, with reverse current flow prevention function).
- 10V/2000mA regulator (when used with an external 2SB921 PNP transistor) with standby function (on/off control).
- Regulators (four for 8V systems and one 5V system) with on/off functions controlled by a shift resister/latch function. This IC also provides four open-collector output systems and two emitter-follower type output systems.
- Full complement of built-in protection circuits.
 - 1) Overcurrent protection for each VO except the open collector outputs.
 - 2) Thermal protection for each VO except the VDD5V output.

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter Symbol		Conditions	Ratings	Unit
Supply voltage	V _{CC} max		24	٧
Allowable power dissipation	Pd max	Ta ≤ 25°C, Independent IC 0.82		W
		Ta ≤ 25°C, Mounted substrate *	2.01	W
Thermal junction to ambient air thermal resistance	θј-а		152.4	°C/W
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

^{*} Mounted substrate : 114.3mm×76.1mm×1.6mm, glass epoxy board.

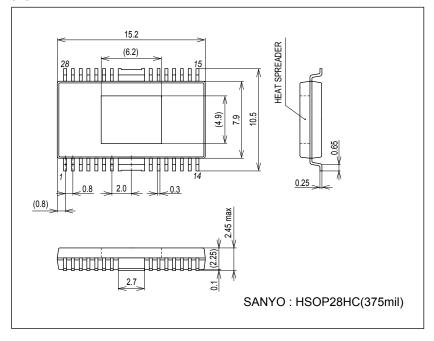
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Recmmended Operating Condition at $Ta = 25^{\circ}C$

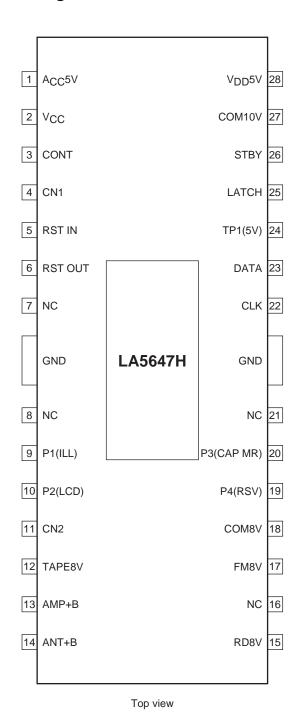
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}	V _{DD} 5V output, normal operating mode	6 to 18	V
		COM10V output, normal operating mode	10.3 to 18	V
Standby input voltage	V _{ST} OFF	Output off, control voltage	0 to 1.5	V
	V _{ST} ON	Output on, control voltage	3.5 to 5	V
V _{DD} 5V output current	I _O 1		0 to 50	mA
COM10V output current	I _O 2	Within the external transistor ASO		mA
COM8V output current	I _O 3		0 to 100	mA
TAPE8V output current	I _O 4		0 to 30	mA
RD8V output current	I _O 5		0 to 150	mA
FM8V output current	I _O 6		0 to 100	mA
A _{CC} 5V output current	I _O 7		0 to 100	mA
AMP+B output current	I _O 9		0 to 100	mA
ANT+B output current	I _O 10		0 to 100	mA
P1 (ILL) output current	I _O 11		0 to 10	mA
P2 (LCD) output current	I _O 12		0 to 10	mA
P3 (CAP MR) output current	I _O 13		0 to 10	mA
P4 (RSV) output current	I _O 14		0 to 10	mA

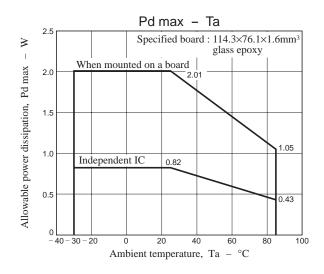
Electrical Characteristics at Ta = 25°C, in the specified test circuit

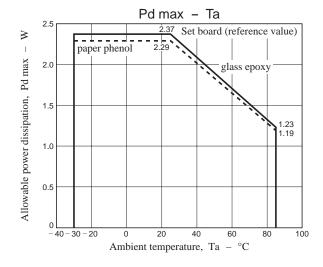
Darameter	Cumbal	Conditions		Ratings		Unit	
Parameter	Symbol	Conditions	min	typ max		Unit	
No load state [V _{CC} = 13.2V, each o	output I _O = 0A]						
Current drain 1	I _Q 1	V _{STBY} = 0V		200	250	μΑ	
Current drain 2	I _Q 2	V _{STBY} = 5V		12	40	mA	
$V_{DD}5V$ output [$V_{CC} = 13.2V, V_{STB}$	$Y = 0V, I_{O}1 = 50$	mA]					
Output voltage	V _O 1		4.75	5	5.25	V	
Dropout voltage	V _{DROP} 1	V _{CC} = 4.75V		1.0	1.4	V	
Line regulation	ΔV _O LN1	6.7V ≤ V _{CC} ≤ 18V		10	30	mV	
Load regulation	regulation $\Delta V_{O}LD$ $0 \le I_{O}1 \le 50mA$				100	mV	
Peak output current	I _{OP} 1		50			mA	
Output shorted current (for reference purposes)	I _O SC1			100		mA	
Ripple rejection			50	56		dB	
Output pin leakage current	I _O LEAK	V _{CC} = 0V, V _O = 6V		0.001	2	μΑ	
Output voltage difference 1 $\Delta V_{\mbox{\scriptsize ODEF}}$		Between V _{DD} 5V and A _{CC} 5V, (V _O 1-V _O 7) I _O 7 = 100mA	0	0.1	0.285	V	
Reset block [V _{CC} = 13.2V]	1		<u> </u>	<u> </u>	<u> </u>		
Reset threshold voltage V _R		V_{RST} OUT : Lo \rightarrow Hi	1.21	1.25	1.30	V	
Reset threshold hysteresis voltage	V _{RTH}		25	50	80	mV	
COM10V output [V _{CC} = 13.2V, V _{ST}	BY = 5V, I _O 2 = 2	A]					
Output voltage	V _O 2	With an external 2SB921 Transistor	9.5	10	10.5	V	
Dropout voltage	V _{DROP} 2	V _{CC} = 9.5V		0.3	0.6	V	
Line regulation	ΔV _O LN2	11.2V ≤ V _{CC} ≤ 18V		30	300	mV	
Load regulation	ΔV _O LD2	$0 \le I_{\bigodot} 2 \le 2A$		200	800	mV	
Control input current	ICONT				20	mA	
Output off voltage	V _O 2 OFF				0.2	V	
Ripple rejection (for reference purposes)	R _{REJ} 2	$C_{CN} = 1\mu F, f = 120Hz,$ $11.2V \le V_{CC} \le 18V$		70		dB	

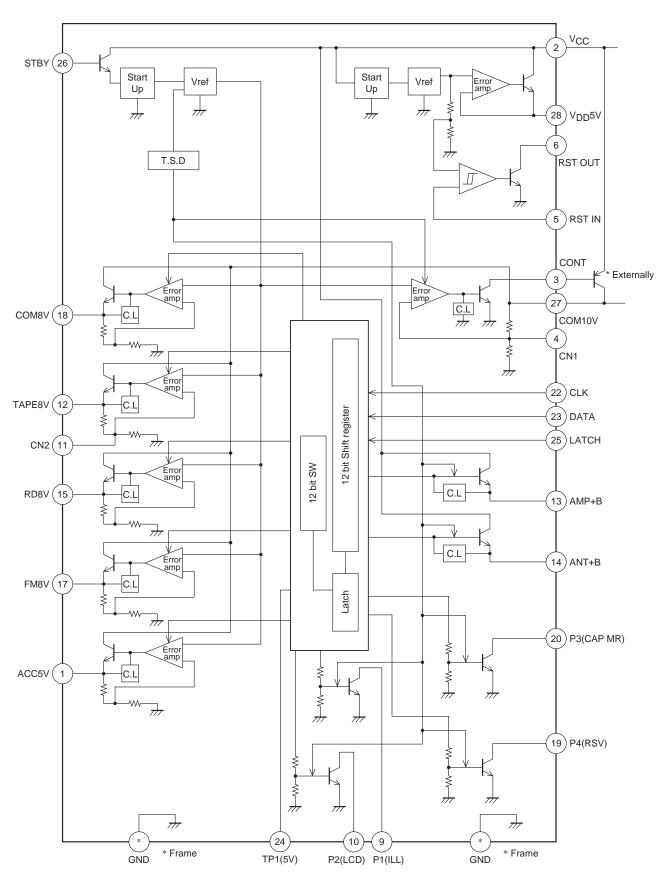

Parameter	Symbol	Conditions	Т	Ratings		Unit
			min	typ	max	Onic
COM8V output [V _{CC} = 13.2V, V _S		0mA]	1			
Output voltage	V _O 3		7.6	8	8.4	V
Dropout voltage	V _{DROP} 3	V _O 2 = 7.6V		1.0	1.4	V
Line regulation	ΔV _O LN3	9.9V ≤ V _{CC} ≤ 18V		50	75	mV
Load regulation	ΔV _O LD3	0 ≤ I _O 3 ≤ 100mA		100	150	mV
Peak output current	I _O P3		100			mA
Output shorted current (for reference purposes)	I _O SC3			230		mA
Output off voltage	V _O 3 OFF				0.2	V
TAPE8V output [V _{CC} = 13.2V, V _S	STBY = 5V, I _O 4 = 3	0mA]				
Output voltage	V _O 4		7.6	8	8.4	V
Dropout voltage	V _{DROP} 4	V _O 2 = 7.6V		1.0	1.4	V
Line regulation	ΔV _O LN4	9.9V ≤ V _{CC} ≤ 18V		50	75	mV
Load regulation	ΔV _O LD4	0 ≤ I _O 4 ≤ 30mA		100	150	mV
Peak output current	I _O P3		30			mA
Output shorted current (for reference purposes)	I _O SC4			60		mA
Output off voltage	V _O 4 OFF				0.2	V
RD8V output [V _{CC} = 13.2V, V _{STI}		mA]			-	
Output voltage	V _O 5		7.6	8	8.4	V
Dropout voltage	V _{DROP} 5	V _O 2 = 7.6V		1.0	1.4	V
Line regulation	ΔV _O LN5	9.9V ≤ V _{CC} ≤ 18V		50	75	mV
Load regulation	ΔV _O LN5	0 ≤ I _O 5 ≤ 150mA		100	150	mV
		0 2 100 2 10011A	150	100	130	
Peak output current	I _O P5		150	200		mA
Output shorted current (for reference purposes)	I _O SC5			320		mA
Output off voltage	V _O 5 OFF				0.2	V
FM8V output [V _{CC} = 13.2V, V _{STI}		mA1			-	
Output voltage	V _O 6	·	7.6	8	8.4	V
Dropout voltage	V _{DROP} 6	V _O 2 = 7.6V		1.0	1.4	
Line regulation	ΔV _O LN6	9.9V ≤ V _{CC} ≤ 18V		50	75	mV
Load regulation	ΔV _O LD6	0 ≤ I _O 6 ≤ 100mA		100	150	mV
		0 3 100 3 100HA	100	100	130	
Peak output current	I _O P6		100	220		mA mA
Output shorted current (for reference purposes)	I _O SC6			230		mA
Output off voltage	V _O 6 OFF				0.2	V
Output voltage difference 2	ΔV _O DEF2	Between RD8V and FM8V, I _O 5 = 150mA			0.3	V
A _{CC} 5V output [V _{CC} = 13.2V, V _S						-
Output voltage	V _O 7		4.65	4.9	5.15	V
Dropout voltage	V _{DROP} 7	V _O 2 = 4.65V	7.00	1.0	1.4	
Line regulation	ΔV _O LN7	$6.6V \le V_{CC} \le 18V$		50	75	mV
Load regulation		$0.60 \le V_{CC} \le 16V$ $0 \le I_{O}7 \le 100\text{mA}$		100	150	mV
	ΔV _O LD7	O = IOI = IOOIIIA	100	100	100	
Peak output current	I _O P7		100	000		mA mA
Output shorted current (for reference purposes)	I _O SC7			220		mA
Output off voltage	V _O 7 OFF	 			0.2	V
AMP+B output [V _{CC} = 13.2V, V _S		_i . 0mAl			۷.۰ــ	•
Output voltage	V _O 9		11.7	12.2		V
Dropout voltage			11.7	12.2	1.5	
	V _{DROP} 9	+	100	1	1.0	
Peak output current	I _O P9		100	170		mA m^
Output shorted current (for reference purposes)	I _O SC9			170		mA
Output off voltage	V _O 9 OFF				0.2	V

Parameter	Symbol	Conditions	Ratings				
Parameter	Symbol		min typ ma		max	Unit	
ANT+B output [V _{CC} = 13.2V, V _{STI}	_{BY} = 5V, I _O 10 = 10	00mA]					
Output voltage	V _O 10		11.7	12.2		V	
Dropout voltage	V _{DROP} 10			1	1.5	V	
Peak output current	I _O P10		100			mA	
Output shorted current (for reference purposes)	I _O SC10			170		mA	
Output off voltage	V _O 10 OFF				0.2	V	
P1 (ILL) output [V _{CC} = 13.2V, V _{ST}	_{BY} = 5V, I _O 11 = 1	0mA]					
Dropout voltage	V _{DROP} 11			0.4	0.8	V	
Sink output current	I _O 11		10			mA	
P2 (LCD) output [V _{CC} = 13.2V, V _S	_{TBY} = 5V, I _O 12 =	10mA]					
Dropout voltage	V _{DROP} 12			0.4	0.8	V	
Sink output current	I _O 11		10			mA	
P3 (CAP MR) output [V _{CC} = 13.2V	, V _{STBY} = 5V, I _O 1	3 = 10mA]					
Dropout voltage	V _{DROP} 13			0.4	0.8	V	
Sink output current	I _O 13		10			mA	
P4 (RSV) output [V _{CC} = 13.2V, V _S	TBY = 5V, I _O 14 =	10mA]					
Dropout voltage	V _{DROP} 14			0.4	0.8	V	
Sink output current	I _O 14		10			mA	
Overheat protection							
Operating temperature*	TSD	V _O 2 (COM10V) operation V _O 3 to V _O 14 interlocked to V _O 2	150	175		°C	


Note) * for overheat protection indicates the design target value and not the measured value.

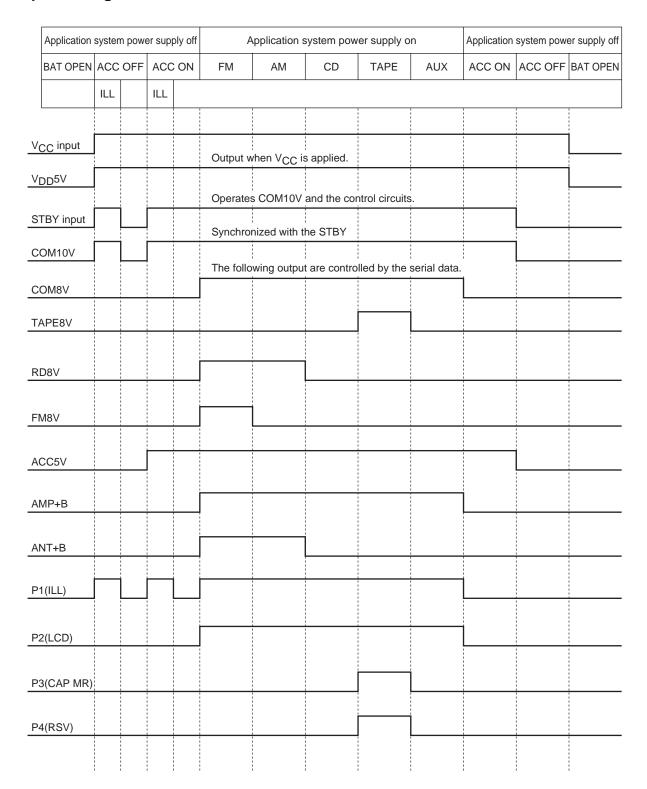

Package Dimensions


unit: mm (typ) 3234B


Pin Assignment

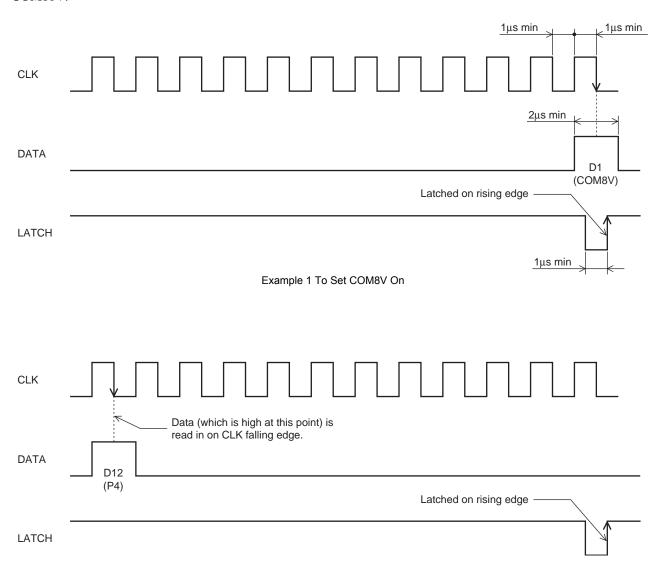
Block Diagram

 * External PNPTr is 2SB921 or equivalent under application.


Pin Functions

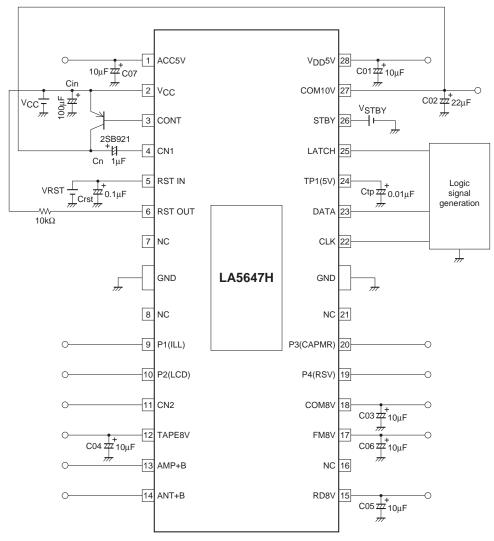
<u> </u>	nctions		
Pin No.	Functions	Description	Equivalent Circuit
1	4.9V 100mA (ACC 5V)	Stabilized 5V system and 8V system power supply outputs	Vcc
11	CN2	The on/off state of CD5V is controlled by STBY and other	<u> </u>
12	8V 30mA (TAPE 8V)	systems by the serial data, respectively.	
15	8V 150mA (RD 8V)	Application examples	1
17	8V 100mA (FM 8V)	Pin 1: ACC5V, digital 5V	12
18	8V 100mA (COM 8V)	Pin 11 : Insert a capacitor of about 10μF between this pin and	150
		pin 12 to improve the TAPE8V ripple rejection. This pin	17 \ \frac{\fin}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\
		controls the pin 12 output voltage. Set this pin to about	18 × 8V:27kΩ
		7V by inserting a resistor between this pin and ground	♣ ₹5V:15kΩ
		if impulse noise from the Dolby IC occurs in cranking	
		mode.	
		Pin 12 : TAPE8V	5.1kΩ ≥
		Pin 15 : 9 pro V _{CC} as 9 RD 8V	
		Pin 17 : FM8V power supply for use with a band switch	m m $ $
		Pin 18 : COM8V power supply for an electronic volume/tone	
		control circuit.	44.0
		* : Note that total of Pd must not exceed the rating of	Only applies to the pin 12 output block
		the IC.	Offig applies to the pill 12 output block
2	V _{CC}	Pin 2: Power supply	VCC
3	CONT	*: This pin must be at the same voltage level as the	20 , , , ,
4	CN1	emitter of the external transistor.	↓
		Pin 3: Bias for the external Transistor. The maximum sink	\$ 10K22
		current is 20mA.	<i>///</i>
		Pin 4: Ripple rejection for each of the power supply systems.	Vcc
		To increase the rejection capacity, insert a 1µF	100
		capacitor between this pin and pin 27.	+
		This pin controls the COM10V output voltage. The	
		voltage is set to 10V internally.	30
0=	001401	5: 27 7: 40/	+ "
27	COM10V	Pin 27 : The 10V power supply used for CD power, tuner VT,	
		cassette loading, LCD, and ILL illumination.	100Ω
		Used as the power supply for internal 8V and 5V	/// \
		(except V _{DD} 5V) systems.	vcc+
		The output voltage can be controlled with the CN1	2.2kΩ≶
		pin. The ripple rejection can be improved at the CN1 pin.	<u> </u>
		The hippie rejection can be improved at the GNT pin.	270
			<u> </u>
			A
			777
			///
			Vcc_
			40 13kΩ W
			★
			मा मा
5	RST IN	Voltage detection input: pin 6 is the corresponding output.	V
		Internal reference voltage : 1.25V, typical.	
		Used for +B detection, Acc detection, and other purposes by	<u> </u>
		resistor voltage division of the +B level.	★
			50
			क्ता क्षा

Continued fr	rom preceding page.		
Pin No.	Functions	Description	Equivalent Circuit
6	RST OUT	Reset signal output to microcontroller and other circuits.	60
7	NC		
8	NC		
16	NC		
21	NC		
9	P1 (ILL)	The on/off state of these systems is controlled by the serial	V _{CC}
10	P2 (LCD)	data.	
19	P4 (CAP MR)	Pin 9 : ILL illumination on/off control	*
20	P3 (RSV)	Pin 10 : LCD illumination on/off control Pins 19 and 20 : Used for other applications.	9 10 19 20
13 14	V _{CC} 100mA (AMP+B) V _{CC} 100mA (ANT+B)	V _{CC} -1V unstabilized outputs that can provide 100mA. The on/off state of these outputs can be controlled with serial data. Used with the ANT+B and AMP+B systems.	VCC 13 14 0 1/1
22 23 25	CLK DATA LATCH	The serial data received over this serial interface controls the outputs other than COM10V, CD5V, and V _{DD} 5V. It also controls the on/off state of P1 to P4.	VCC 22 23 25 2kΩ W
24	TP1 (5V)	Monitors the power supply used for the internal logic circuits (the CLK, DATA, and LATCH inputs and on/off control).	240 15kΩ 5.1kΩ 7//


Pin No.	Functions	Description	Equivalent Circuit
26	STBY	Controls the running/stopped state of this IC. When low, only V _{DD} 5V operates. All other circuits are stopped. When high, only COM10V and V _{DD} 5V operate unconditionally. All other outputs are controlled by the serial data.	V _{CC} 40kΩ 40kΩ ≥ 20kΩ ≥
28	V _{DD} 5V	 When +B is applied to the V_{CC}2 pin, 5V is output. Used as the power supply system for systems, such as the microcontroller, that require memory backup. IQ = 150 to 180μA The current flowing into pin 28 when V_{CC} is off, is minimal. 	280 VCC
Frame	GND	Connected to the IC substrate (lowest potential)	

Output Timing Chart

Control Timing and Data Formats


Input the stipulated data to the CLK, DATA, and LATCH pins to control the outputs other than the $V_{DD}5V$ and COM10V.

Example 2 To Set P4 On

DATA	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
Output	COM8V	TAPE8V	RD8V	FM8V	A _{CC} 5V	1	AMP+B	ANT+B	P1 (ILL)	P2 (LCD)	P3 (CAPMR)	P4 (RSV)

Specified Test Circuit

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of July, 2007. Specifications and information herein are subject to change without notice.