Protection of Lithium-Ion Batteries Monolithic IC MM1412

Outline

This IC is used to protect lithium-ion batteries consisting of two cells. It adopts a compact package and has the functions of previous models, with functions for overcharge detection, overdischarge detection and overcurrent detection. A dead time can be set externally.

Features

- 1. Overcharge detection voltage accuracy (0°C to 50°C) $\pm 25 mV/cell$
- 2. Consumption current (Vcell=4.5V)
- 3. Consumption current (Vcell=3.5V)
- 4. Consumption current (Vcell=1.9V)
- 5. Overcharge sensing dead time

Package

VSOP-8A

Applications

IC for protection of lithium-ion batteries consisting of two cells.

Pin Assignment

1	OC
2	GD
3	CS
4	GND
5	TD
6	VL
7	Vcc
8	VH

±25mV/cell 150μA typ. 15.0μA typ. 0.5μA typ. can be set externally.

Block Diagram

Pin Description

Pin No.	Pin name	Functions
1 00		Overcharge detection output pin
	00	PNPT _R open collector output
		Overcharge mode: ON
		Normal mode, overdischarge mode, overcurrent mode: OFF
		Discharge control FET (N-ch) control output pin
2	GD	Normal mod, overcharge mode: H
		Overdischarge mode, overcurrent mode: L
		Overcurrent detection input pin
3 CS	CS	Monitors discharge current equivalently by the voltage drop between discharge control FET source
	05	and drain. Stops discharge when voltage between CS pin and GND pin goes above overcurrent
		detection threshold value, and holds until load is released.
4	GND	Ground pin, or lower cell load negative pole input pin.
5	TD	Overcharge detection dead time setting pin
5	5 ID	Dead time can be set by adding a capacitor between TD and GND pins.
6	VI	Battery intermediate potential input pin
0	0 VL	Connection pin for lower cell positive electrode side and upper cell negative electrode side.
7	Vcc	Power supply input pin
8	VH	Upper cell positive electrode input pin

Note: Mode Descriptions

(1) Overcharge mode

Either H cell or L cell battery voltage exceeds overcharge detection voltage. Overcharge detection operation delay can be set by the dead time setting pin.

(2) Normal mode

Both H and L cell battery voltages exceed overdischarge detection voltage and are less than overcharge detection voltage.

(3) Overdischarge mode

Either H or L cell battery voltage is less than overdischarge detection voltage.

Overdischarge detection dead time is set internally. Overdischarge mode is released when charging causes voltage to rise above overdischarge detection voltage. Also, when battery voltage goes above overdischarge release voltage, it resets without charging, but the value is set high. (This function is included in case charging can not be detected. Also, this release voltage has a temperature coefficient of $-6mV/^{\circ}C$.)

(4) Overcurrent mode

Voltage between CS and GND exceeds overcurrent detection voltage during discharge.

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Unit	
Storage temperature	Tstg	-40~+125	°C	
Operating temperature	Topr	-20~+70	°C	
Power supply voltage	Vcc max.	-0.3~+18	V	
OC pin impressed voltage	Voc max.	-0.6~Vcc	V	
CS pin impressed voltage	Vcs max.	-0.6~Vcc	V	
Allowable loss	Pd	300	mW	

Recommended Operating Conditions

Item	Symbol	Ratings	Unit
Operating temperature	Topr	-20~+70	°C
Operating power supply voltage	Vop	+0.9~+18	V

Electrical Characteristics (Except where noted otherwise, Ta=25°C)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Overcharge detection voltage	Voc	Ta=0°C~50°C	4.325	4.350	4.375	V
Overcharge detection hysteresis voltage	⊿Voc		170	220	270	mV
Overdischarge detection voltage	Vod		2.20	2.30	2.40	V
Consumption current 1	Ivh1	$V_{H}=V_{L}=1.0V V_{CS}=1.4V$			0.1	μA
Consumption current 2	Ivh2	$V_{H}=V_{L}=1.9V V_{CS}=3.2V$		0.5	0.8	μA
Consumption current 3	Ivh3	$V_{H}=V_{L}=3.5V$		15.0	20.0	μA
Consumption current 4	Ivh4	$V_{H}=V_{L}=4.5V$, $Roc=270k\Omega$		150		μA
VL pin input current	Ivl	$V_{H}=V_{L}=3.5V$	-0.3	0	0.3	μA
Overdischarge release voltage	Vdf	Discharge resume by voltage rise	3.30	3.50	3.70	V
GD pin H output voltage	Vgdh	$V_{H}=V_{L}=3.5V$, IL=-10 μ A	VH-0.3	VH-0.2		V
GD pin L output voltage	Vgdl	$V_{H}=V_{L}=3.5V$, IL=10 μA		0.2	0.3	V
OC pin output current	Іосн	$V_{\rm H}=V_{\rm L}=4.5V$	30	150		μA
Overcurrent detection threshold value	Vcs1		135	150	165	mV
Overcurrent short threshold value	Vcs2	When both battery pack pins are shorted	0.35	0.45	0.55	V
Overcurrent release		Load release: Load of $5MEG\Omega$ or more between both battery pack pins			ıs	
Overcurrent detection delay time 1	toc1		7	12	18	mS
Overcurrent detection delay time 2	toc2	*1		30	100	uS
Overdischarge detection delay time	tod		8	13	20	mS
Overcharge detection dead time	toch	Стс=0.18µF	0.5	1.0	1.5	S
Start-up voltage	VST	$V_{H}=V_{L}=2.5V$	-0.24	-0.12	-0.04	V

Note 1: Overcurrent short mode delay time (overcurrent delay time 2) is IC response speed.
In actual use, the time for discharging the discharge control FET gate capacity is added.
Also, when voltage change is large due to excess current, the IC internal bias current may turn off temporarily, causing response time to lengthen. Select the time constant for the capacitor connected to the power supply pin so that power supply fluctuation is more than 100µS/1V.

Note 2: Calculate overcharge dead time according to the following formula: Overcharge detection dead time: $t_{ALM} - 5.55 \times C_{TD}[S]$ [CTD: external capacitor, Unit:µF]

Measuring Circuit

Measuring Circuit 1

(Voc, riangle Voc, Vod, Vdf, Vst, Vcs, Idch, Vgdh, Vgdl)

Measuring Circuit 2

(toc, tod, toch)

Note :

Timing Chart

Application Circuit

Characteristics

Overcharge Detection Time (Dead Time)

Note: Dead time can be calculated according to the following formula:

toc=5.55×Стр [S]

toc=Overcharge Detection Time

CTD=External Capacitor…Unit : µF