AMMC-6232 # 18 to 32 GHz GaAs High Linearity Low Noise Amplifier ## **Data Sheet** #### **Description** Avago Technologies AMMC-6232 is an easy-to-use broadband, high gain, high linearity Low Noise Amplifier that operates from 18 GHz to 32GHz. The wide band and unconditionally stable performance makes this MMIC ideal as a primary or sub-sequential low noise block or a transmitter or LO driver. The MMIC has 4 gain stages and requires a 4V, 135mA power supply for optimal performance. The two gate bias voltages can be combined for ease of use or separated for more control flexibility. DCblock capacitors are integrated at the input and output stages. Since this MMIC covers several bands, it can reduce part inventory and increase volume purchase options The MMIC is fabricated using PHEMT technology to provide exceptional low noise, gain and power performance. The backside of the chip is both RF and DC ground which helps simplify the assembly process and reduce assembly related performance variations and cost. Chip Size: $800 \mu m \times 2000 \mu m$ (31.5 x 78.74 mils) Chip Size Tolerance: $\pm 10~\mu m$ ($\pm 0.4~mils$) Chip Thickness: $100 \pm 10~\mu m$ ($4 \pm 0.4~mils$) Pad Dimensions: $100 \times 100~\mu m$ ($4 \times 4~mils$) #### **Features** - 800μm x 2000μm Die Size - Single Positive Bias Supply - Unconditionally Stable ### Specifications (Vdd = 4.0V, Idd = 135mA) • RF Frequencies: 18 - 32 GHz • High Output IP3: 29dBm • High Small-Signal Gain: 27dB • Typical Noise Figure: 2.8dB • Input, Output Match: -10dB #### **Applications** - Microwave Radio systems - Satellite VSAT, DBS Up/Down Link - LMDS & Pt-Pt mmW Long Haul - Broadband Wireless Access (including 802.16 and 802.20 WiMax) - WLL and MMDS loops - Commercial grade military #### Note: 1. This MMIC uses depletion mode pHEMT devices. ### Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model (Class A) ESD Human Body Model (Class 1A) Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control ## Absolute Maximum Ratings (1) | Parameters / Conditions | Symbol | Unit | Max | |-------------------------|--------|------|-------------| | Drain to Ground Voltage | Vdd | V | 5.5 | | Gate-Drain Voltage | Vgd | V | -8 | | Drain Current | ldd | mA | 200 | | Gate Bias Voltage | Vg | V | +0.8 | | Gate Bias Current | lg | mA | 1 | | RF CW Input Power Max | Pin | dBm | 15 | | Max channel temperature | Tch | C | +150 | | Storage temperature | stg | C | -65 +150 | | Maximum Assembly Temp | Tmax | C | 260 for 20s | | | | | | ⁽¹⁾ Operation in excess of any of these conditions may result in permanent damage to this device. The absolute maximum ratings for Vdd, Vgd, Idd Vg, Ig and Pin were determined at an ambient temperature of 25°C unless noted otherwise. ## DC Specifications/ Physical Properties (2) | Parameter and Test Condition | Symbol | Unit | Min | Тур | Max | |---------------------------------|--------|------|------|-------|-------| | Drain Supply Current (Vd=4.0 V) | ldd | mA | | 135 | 150 | | Drain Supply Voltage | Vd | V | 3 | 4 | 5 | | Gate Bias Current | lg | mA | | 0.1 | | | Gate Bias Voltage | Vg | ٧ | -1.3 | -0.95 | -0.55 | | Thermal Resistance(3) | θјс | °C/W | | 35.1 | | ⁽²⁾ Ambient operational temperature TA=25°C unless noted ### AMMC-6232 RF Specifications (4) T_A = 25°C, Vdd = 4.0 V, Idd = 135mA, Zo=50 Ω | | | Unit | Frequency | Spec | | | | |--|--------|------|------------|------|------|-----|--| | Parameters and Test Conditions | Symbol | | (GHz) | Min | Тур | Max | | | Small signal gain ⁽⁴⁾ | AGain | dB | 20 | 23 | 32 | | | | | | | 26 | 23 | 26.7 | | | | | | | 31 | 23 | 24.6 | | | | Noise Figure into $50\Omega^{(4)}$ | NF | dB | 20 | | 3.2 | 4.5 | | | | | | 26 | | 3.3 | 4.5 | | | | | | 31 | | 4 | 4.5 | | | Output Power at 1dB Gain Compression (4) | P1dB | dBm | 20, 26, 31 | 15 | 20 | | | | Output Third Order Intercept Point (4) | OIP3 | dBm | 20 | 26 | 28 | | | | | | | 26 | 26 | 28 | | | | | | | 31 | 26 | 27 | | | | Isolation | S12 | dB | 20, 26, 31 | | -50 | | | | Input Return Loss | S11 | dB | 20, 26, 31 | | -10 | | | | Output Return Loss | S22 | dB | 20, 26, 31 | | -10 | | | ⁽⁴⁾ All tested parameters guaranteed with measurement accuracy ±5dBm for OPI3 and ± 2dB for gain, NF and P1dB. ⁽³⁾ Channel-to-backside Thermal Resistance (Tchannel = 34° C) as measured using infrared microscopy. Thermal Resistance at backside temp. (Tb) = 25° C calculated from measured data. ## AMMC-6232 Typical Performance[1] $(T_A = 25^{\circ}C, Vdd=4V, Idd=135mA, Z_{in} = Z_{out} = 50 \Omega, on-wafer unless noted)$ Figure 1. Small-signal Gain Figure 3. Input Return Loss Figure 5. Output Return Loss Figure 2. Noise Figure Figure 4. Output P-1dB Figure 6. Output IP3 ## **AMMC-6232 Typical Performance (Cont)** $(T_A = 25^{\circ}C, Vdd=4V, Idd=135mA, Z_{in} = Z_{out} = 50 \Omega, on-wafer unless noted)$ Figure 7. Isolation Figure 9. Small-signal Gain Over Vdd Figure 11. Input Return Loss Over Vdd Figure 8. Idd Over Vdd (same Vg) Figure 10. Noise Figure Over Vdd Figure 12. Output Returrn Loss Over Vdd ### **AMMC-6232 Typical Performance (Cont)** $(T_A = 25^{\circ}C, Vdd=4V, Idd=135mA, Z_{in} = Z_{out} = 50 \Omega, on-wafer unless noted)$ Figure 13. Output P1dB Over Vdd Figure 15. Small-signal Gain Over Temperature Figure 17. Output P-1dB Over Vdd Figure 14. Output IP3 Over Vdd Figure 16. Noise Figure Over Temperature Figure 18. Output IP3 Over Vdd # AMMC-6232 Typical S-parameters (T_A = 25°C, Vdd=4V, Idd=135mA, $Z_{in} = Z_{out} = 50 \Omega$ unless noted) | | | S11 | | | S21 | | | S12 | | | S22 | | |--|--|--|--|--|--|---|--|--|---|--|--|--| | Freq | Mag | dB | Phase | | 1.0 | 0.818 | -1.746 | -60.021 | 0.025 | -31.992 | -173.734 | 0.003 | -49.134 | 72.088 | 0.954 | -0.405 | -72.004 | | 3.0 | 0.804 | -1.897 | -116.721 | 0.014 | -36.892 | -107.504 | 0.002 | -54.203 | -170.740 | 0.590 | -4.586 | -135.849 | | 5.0 | 0.887 | -1.039 | -156.457 | 0.002 | -52.654 | 165.254 | 0.002 | -52.786 | 169.502 | 0.836 | -1.555 | -171.399 | | 7.0 | 0.899 | -0.929 | 173.389 | 0.001 | -61.276 | 178.332 | 0.002 | -52.130 | 89.767 | 0.784 | -2.113 | 157.037 | | 9.0 | 0.886 | -1.052 | 146.339 | 0.016 | -35.917 | -29.907 | 0.001 | -64.067 | -146.750 | 0.743 | -2.583 | 136.088 | | 11.0 | 0.777 | -2.188 | 121.351 | 0.193 | -14.294 | -3.415 | 0.001 | -58.094 | -30.428 | 0.743 | -2.575 | 110.111 | | 13.0 | 0.735 | -2.669 | 90.767 | 0.661 | -3.593 | -106.340 | 0.002 | -55.057 | 41.432 | 0.661 | -3.600 | 78.986 | | 14.0 | 0.678 | -3.381 | 71.345 | 1.397 | 2.907 | -146.177 | 0.004 | -49.054 | -113.664 | 0.609 | -4.312 | 62.630 | | 15.0 | 0.638 | -3.905 | 50.092 | 3.160 | 9.993 | 173.145 | 0.003 | -51.286 | 12.903 | 0.547 | -5.241 | 47.093 | | 16.0 | 0.613 | -4.256 | 22.797 | 7.829 | 17.874 | 127.412 | 0.003 | -50.242 | -7.415 | 0.496 | -6.087 | 28.418 | | 17.0 | 0.660 | -3.612 | -17.199 | 21.310 | 26.572 | 66.397 | 0.004 | -48.669 | 132.091 | 0.448 | -6.966 | 11.714 | | 18.0 | 0.529 | -5.528 | -78.705 | 40.832 | 32.220 | -25.727 | 0.002 | -54.514 | -150.466 | 0.385 | -8.281 | -4.471 | | 18.5 | 0.406 | -7.827 | -102.424 | 41.585 | 32.379 | -68.344 | 0.001 | -56.637 | -23.683 | 0.384 | -8.305 | -12.762 | | 19.0 | 0.354 | -9.008 | -119.585 | 40.952 | 32.246 | -103.547 | 0.002 | -53.933 | 125.705 | 0.365 | -8.753 | -22.510 | | 19.5 | 0.312 | -10.119 | -133.759 | 41.088 | 32.274 | -134.623 | 0.004 | -48.533 | -99.868 | 0.359 | -8.899 | -30.282 | | 20.0 | 0.290 | -10.761 | -151.887 | 41.954 | 32.455 | -163.735 | 0.003 | -50.000 | -84.512 | 0.332 | -9.567 | -38.594 | | 20.5 | 0.283 | -10.954 | -175.381 | 42.834 | 32.636 | 166.906 | 0.003 | -51.175 | 101.027 | 0.321 | -9.865 | -53.085 | | 21.0 | 0.268 | -11.450 | 161.839 | 42.840 | 32.637 | 136.860 | 0.003 | -47.869 | -35.577 | 0.295 | -10.589 | -58.661 | | 21.5 | 0.232 | -12.699 | 147.124 | 41.949 | 32.455 | 108.907 | 0.003 | -50.079 | 141.804 | 0.233 | -9.931 | -73.699 | | 22.0 | 0.232 | -14.174 | 120.747 | 40.151 | 32.074 | 80.907 | 0.003 | -49.044 | -66.647 | 0.305 | -10.307 | -75.111 | | 22.5 | 0.142 | -16.979 | 98.811 | 37.945 | 31.583 | 55.254 | 0.003 | -51.053 | -43.775 | 0.286 | -10.877 | -83.302 | | 23.0 | 0.118 | -18.530 | 74.852 | 35.378 | 30.975 | 30.342 | 0.003 | -51.240 | -54.194 | 0.268 | -11.448 | -92.687 | | 23.5 | 0.094 | -20.582 | 50.063 | 32.869 | 30.336 | 7.146 | 0.002 | -53.496 | -170.142 | 0.279 | -11.087 | -101.188 | | 24.0 | 0.070 | -23.065 | 33.219 | 30.641 | 29.726 | -14.152 | 0.006 | -44.954 | 125.867 | 0.258 | -11.772 | -103.724 | | 24.5 | 0.082 | -21.723 | -23.615 | 29.175 | 29.300 | -35.291 | 0.003 | -51.886 | 59.279 | 0.283 | -10.968 | -109.636 | | 25.0 | 0.086 | -21.283 | -48.577 | 27.913 | 28.916 | -55.741 | 0.003 | -50.720 | -117.666 | 0.274 | -11.231 | -120.741 | | 25.5 | 0.086 | -21.326 | -61.417 | 26.734 | 28.541 | -76.327 | 0.002 | -55.542 | -174.291 | 0.267 | -11.484 | -134.054 | | 26.0 | 0.086 | -21.335 | -72.999 | 25.441 | 28.111 | -96.844 | 0.002 | -53.122 | 129.172 | 0.252 | -11.956 | -141.622 | | 26.5 | 0.100 | -20.009 | -85.033 | 24.006 | 27.607 | -116.383 | 0.000 | -70.458 | -6.235 | 0.243 | -12.272 | -147.702 | | 27.0 | 0.121 | -18.335 | -90.393 | 22.974 | 27.225 | -135.333 | 0.002 | -52.072 | 96.583 | 0.215 | -13.349 | -151.808 | | 27.5 | 0.140 | -17.079 | -92.085 | 21.829 | 26.781 | -153.561 | 0.002 | -53.736 | 175.096 | 0.190 | -14.435 | -157.448 | | 28.0 | 0.147 | -16.671 | -93.567 | 21.205 | 26.529 | -171.261 | 0.003 | -51.674 | -150.054 | 0.180 | -14.901 | -169.765 | | 28.5 | 0.168 | -15.504 | -104.424 | 20.735 | 26.334 | 170.769 | 0.006 | -44.656 | -42.304 | 0.169 | -15.457 | -174.716 | | 29.0 | 0.184 | -14.710 | -106.694 | 20.656 | 26.301 | 152.609 | 0.003 | -50.322 | -50.809 | 0.164 | -15.678 | 179.624 | | 29.5 | 0.206 | -13.734 | -112.920 | 20.761 | 26.345 | 133.333 | 0.002 | -55.781 | -91.759 | 0.134 | -17.439 | 169.927 | | 30.0 | 0.217 | -13.275 | -114.467 | 20.431 | 26.206 | 114.454 | 0.002 | -55.378 | -142.825 | 0.095 | -20.401 | 156.964 | | 30.5 | 0.222 | -13.092 | -115.644 | 20.688 | 26.314 | 94.813 | 0.002 | -51.486 | 97.286 | 0.097 | -20.267 | 115.370 | | 31.0 | 0.212 | -13.457 | -121.023 | 20.734 | 26.334 | 73.377 | 0.003 | -51.134 | 116.486 | 0.093 | -20.207 | 90.295 | | 31.5 | 0.212 | -12.964 | -128.559 | 20.612 | 26.282 | 52.636 | 0.003 | -51.134 | -43.352 | 0.077 | -22.279 | 45.612 | | 32.0 | 0.246 | | | | | | | | | | -18.257 | | | 33.0 | 0.270 | 1 -1/1/1 | _ K() /L/U |)() <(1) <u>4</u> | I /h !5/ | | ()()()() | 1 -59 538 | 1 4/465 | | | | | | | -12.171
-10.784 | -130.429
-129.264 | 20.304 | 26.152
25.703 | 31.050
-13.920 | 0.001 | -59.538
-42 943 | 47.465
-140.352 | 0.122 | | 4.816 | | | 0.289 | -10.784 | -129.264 | 19.283 | 25.703 | -13.920 | 0.007 | -42.943 | -140.352 | 0.227 | -12.866 | -23.228 | | 34.0 | 0.289
0.267 | -10.784
-11.479 | -129.264
-149.919 | 19.283
16.963 | 25.703
24.590 | -13.920
-60.335 | 0.007
0.006 | -42.943
-44.688 | -140.352
37.600 | 0.227
0.288 | -12.866
-10.820 | -23.228
-45.951 | | 34.0
35.0 | 0.289
0.267
0.276 | -10.784
-11.479
-11.175 | -129.264
-149.919
-154.786 | 19.283
16.963
14.380 | 25.703
24.590
23.155 | -13.920
-60.335
-106.453 | 0.007
0.006
0.003 | -42.943
-44.688
-49.125 | -140.352
37.600
29.465 | 0.227
0.288
0.389 | -12.866
-10.820
-8.194 | -23.228
-45.951
-60.818 | | 34.0
35.0
36.0 | 0.289
0.267
0.276
0.231 | -10.784
-11.479
-11.175
-12.724 | -129.264
-149.919
-154.786
-162.131 | 19.283
16.963
14.380
11.218 | 25.703
24.590
23.155
20.999 | -13.920
-60.335
-106.453
-153.267 | 0.007
0.006
0.003
0.003 | -42.943
-44.688
-49.125
-50.088 | -140.352
37.600
29.465
-115.073 | 0.227
0.288
0.389
0.414 | -12.866
-10.820
-8.194
-7.655 | -23.228
-45.951
-60.818
-71.849 | | 34.0
35.0
36.0
37.0 | 0.289
0.267
0.276
0.231
0.215 | -10.784
-11.479
-11.175
-12.724
-13.355 | -129.264
-149.919
-154.786
-162.131
-179.755 | 19.283
16.963
14.380
11.218
8.435 | 25.703
24.590
23.155
20.999
18.522 | -13.920
-60.335
-106.453
-153.267
161.897 | 0.007
0.006
0.003
0.003
0.003 | -42.943
-44.688
-49.125
-50.088
-50.724 | -140.352
37.600
29.465
-115.073
-89.514 | 0.227
0.288
0.389
0.414
0.502 | -12.866
-10.820
-8.194
-7.655
-5.992 | -23.228
-45.951
-60.818
-71.849
-87.410 | | 34.0
35.0
36.0
37.0
38.0 | 0.289
0.267
0.276
0.231
0.215
0.218 | -10.784
-11.479
-11.175
-12.724
-13.355
-13.217 | -129.264
-149.919
-154.786
-162.131
-179.755
-179.314 | 19.283
16.963
14.380
11.218
8.435
6.181 | 25.703
24.590
23.155
20.999
18.522
15.821 | -13.920
-60.335
-106.453
-153.267
161.897
120.672 | 0.007
0.006
0.003
0.003
0.003
0.006 | -42.943
-44.688
-49.125
-50.088
-50.724
-44.152 | -140.352
37.600
29.465
-115.073
-89.514
-113.404 | 0.227
0.288
0.389
0.414
0.502
0.547 | -12.866
-10.820
-8.194
-7.655
-5.992
-5.242 | -23.228
-45.951
-60.818
-71.849
-87.410
-93.971 | | 34.0
35.0
36.0
37.0
38.0
39.0 | 0.289
0.267
0.276
0.231
0.215
0.218
0.162 | -10.784
-11.479
-11.175
-12.724
-13.355
-13.217
-15.796 | -129.264
-149.919
-154.786
-162.131
-179.755
-179.314
150.316 | 19.283
16.963
14.380
11.218
8.435
6.181
4.695 | 25.703
24.590
23.155
20.999
18.522
15.821
13.433 | -13.920
-60.335
-106.453
-153.267
161.897
120.672
80.964 | 0.007
0.006
0.003
0.003
0.003
0.006
0.006 | -42.943
-44.688
-49.125
-50.088
-50.724
-44.152
-44.523 | -140.352
37.600
29.465
-115.073
-89.514
-113.404
10.595 | 0.227
0.288
0.389
0.414
0.502
0.547
0.582 | -12.866
-10.820
-8.194
-7.655
-5.992
-5.242
-4.699 | -23.228
-45.951
-60.818
-71.849
-87.410
-93.971
-105.709 | | 34.0
35.0
36.0
37.0
38.0
39.0
40.0 | 0.289
0.267
0.276
0.231
0.215
0.218
0.162
0.188 | -10.784
-11.479
-11.175
-12.724
-13.355
-13.217
-15.796
-14.505 | -129.264
-149.919
-154.786
-162.131
-179.755
-179.314
150.316
101.424 | 19.283
16.963
14.380
11.218
8.435
6.181
4.695
3.671 | 25.703
24.590
23.155
20.999
18.522
15.821
13.433
11.297 | -13.920
-60.335
-106.453
-153.267
161.897
120.672
80.964
39.388 | 0.007
0.006
0.003
0.003
0.003
0.006
0.006 | -42.943
-44.688
-49.125
-50.088
-50.724
-44.152
-44.523
-47.382 | -140.352
37.600
29.465
-115.073
-89.514
-113.404
10.595
-175.209 | 0.227
0.288
0.389
0.414
0.502
0.547
0.582
0.664 | -12.866
-10.820
-8.194
-7.655
-5.992
-5.242
-4.699
-3.554 | -23.228
-45.951
-60.818
-71.849
-87.410
-93.971
-105.709
-111.896 | | 34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0 | 0.289
0.267
0.276
0.231
0.215
0.218
0.162
0.188
0.331 | -10.784
-11.479
-11.175
-12.724
-13.355
-13.217
-15.796
-14.505
-9.592 | -129.264
-149.919
-154.786
-162.131
-179.755
-179.314
150.316
101.424
20.449 | 19.283
16.963
14.380
11.218
8.435
6.181
4.695
3.671
2.964 | 25.703
24.590
23.155
20.999
18.522
15.821
13.433
11.297
9.438 | -13.920
-60.335
-106.453
-153.267
161.897
120.672
80.964
39.388
-9.143 | 0.007
0.006
0.003
0.003
0.003
0.006
0.006
0.004
0.007 | -42.943
-44.688
-49.125
-50.088
-50.724
-44.152
-44.523
-47.382
-43.734 | -140.352
37.600
29.465
-115.073
-89.514
-113.404
10.595
-175.209
-17.567 | 0.227
0.288
0.389
0.414
0.502
0.547
0.582
0.664
0.660 | -12.866
-10.820
-8.194
-7.655
-5.992
-5.242
-4.699
-3.554
-3.604 | -23.228
-45.951
-60.818
-71.849
-87.410
-93.971
-105.709
-111.896
-120.779 | | 34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0
42.0 | 0.289
0.267
0.276
0.231
0.215
0.218
0.162
0.188
0.331
0.671 | -10.784
-11.479
-11.175
-12.724
-13.355
-13.217
-15.796
-14.505
-9.592
-3.471 | -129.264
-149.919
-154.786
-162.131
-179.755
-179.314
150.316
101.424
20.449
-34.435 | 19.283
16.963
14.380
11.218
8.435
6.181
4.695
3.671
2.964
1.992 | 25.703
24.590
23.155
20.999
18.522
15.821
13.433
11.297
9.438
5.985 | -13.920
-60.335
-106.453
-153.267
161.897
120.672
80.964
39.388
-9.143
-70.226 | 0.007
0.006
0.003
0.003
0.003
0.006
0.006
0.004
0.007 | -42.943
-44.688
-49.125
-50.088
-50.724
-44.152
-44.523
-47.382
-43.734
-45.667 | -140.352
37.600
29.465
-115.073
-89.514
-113.404
10.595
-175.209
-17.567
45.831 | 0.227
0.288
0.389
0.414
0.502
0.547
0.582
0.664
0.660 | -12.866
-10.820
-8.194
-7.655
-5.992
-5.242
-4.699
-3.554
-3.604
-2.826 | -23.228
-45.951
-60.818
-71.849
-87.410
-93.971
-105.709
-111.896
-120.779
-128.518 | | 34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0
42.0
43.0 | 0.289
0.267
0.276
0.231
0.215
0.218
0.162
0.188
0.331
0.671
0.822 | -10.784
-11.479
-11.175
-12.724
-13.355
-13.217
-15.796
-14.505
-9.592
-3.471
-1.701 | -129.264
-149.919
-154.786
-162.131
-179.755
-179.314
150.316
101.424
20.449
-34.435
-80.398 | 19.283
16.963
14.380
11.218
8.435
6.181
4.695
3.671
2.964
1.992
0.906 | 25.703
24.590
23.155
20.999
18.522
15.821
13.433
11.297
9.438
5.985
-0.862 | -13.920
-60.335
-106.453
-153.267
161.897
120.672
80.964
39.388
-9.143
-70.226
-124.255 | 0.007
0.006
0.003
0.003
0.003
0.006
0.006
0.004
0.007
0.005 | -42.943
-44.688
-49.125
-50.088
-50.724
-44.152
-44.523
-47.382
-43.734
-45.667
-48.650 | -140.352
37.600
29.465
-115.073
-89.514
-113.404
10.595
-175.209
-17.567
45.831
77.675 | 0.227
0.288
0.389
0.414
0.502
0.547
0.582
0.664
0.660
0.722
0.735 | -12.866
-10.820
-8.194
-7.655
-5.992
-5.242
-4.699
-3.554
-3.604
-2.826
-2.670 | -23.228
-45.951
-60.818
-71.849
-87.410
-93.971
-105.709
-111.896
-120.779
-128.518
-132.437 | | 34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0
42.0
43.0
44.0 | 0.289
0.267
0.276
0.231
0.215
0.218
0.162
0.188
0.331
0.671
0.822
0.744 | -10.784
-11.479
-11.175
-12.724
-13.355
-13.217
-15.796
-14.505
-9.592
-3.471
-1.701
-2.570 | -129.264
-149.919
-154.786
-162.131
-179.755
-179.314
150.316
101.424
20.449
-34.435
-80.398
-102.406 | 19.283
16.963
14.380
11.218
8.435
6.181
4.695
3.671
2.964
1.992
0.906
0.350 | 25.703
24.590
23.155
20.999
18.522
15.821
13.433
11.297
9.438
5.985
-0.862
-9.118 | -13.920
-60.335
-106.453
-153.267
161.897
120.672
80.964
39.388
-9.143
-70.226
-124.255
-164.509 | 0.007
0.006
0.003
0.003
0.003
0.006
0.006
0.004
0.007
0.005
0.004
0.012 | -42.943
-44.688
-49.125
-50.088
-50.724
-44.152
-44.523
-47.382
-43.734
-45.667
-48.650
-38.071 | -140.352
37.600
29.465
-115.073
-89.514
-113.404
10.595
-175.209
-17.567
45.831
77.675
-38.925 | 0.227
0.288
0.389
0.414
0.502
0.547
0.582
0.664
0.660
0.722
0.735 | -12.866
-10.820
-8.194
-7.655
-5.992
-5.242
-4.699
-3.554
-3.604
-2.826
-2.670
-2.293 | -23.228
-45.951
-60.818
-71.849
-87.410
-93.971
-105.709
-111.896
-120.779
-128.518
-132.437
-143.230 | | 34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0
42.0
43.0
44.0
45.0 | 0.289
0.267
0.276
0.231
0.215
0.218
0.162
0.188
0.331
0.671
0.822
0.744
0.745 | -10.784
-11.479
-11.175
-12.724
-13.355
-13.217
-15.796
-14.505
-9.592
-3.471
-1.701
-2.570
-2.557 | -129.264
-149.919
-154.786
-162.131
-179.755
-179.314
150.316
101.424
20.449
-34.435
-80.398
-102.406
-120.374 | 19.283
16.963
14.380
11.218
8.435
6.181
4.695
3.671
2.964
1.992
0.906
0.350
0.146 | 25.703
24.590
23.155
20.999
18.522
15.821
13.433
11.297
9.438
5.985
-0.862
-9.118
-16.688 | -13.920
-60.335
-106.453
-153.267
161.897
120.672
80.964
39.388
-9.143
-70.226
-124.255
-164.509
162.943 | 0.007
0.006
0.003
0.003
0.003
0.006
0.006
0.006
0.004
0.007
0.005
0.004
0.012 | -42.943
-44.688
-49.125
-50.088
-50.724
-44.152
-44.523
-47.382
-43.734
-45.667
-48.650
-38.071
-34.517 | -140.352
37.600
29.465
-115.073
-89.514
-113.404
10.595
-175.209
-17.567
45.831
77.675
-38.925
-30.836 | 0.227
0.288
0.389
0.414
0.502
0.547
0.582
0.664
0.660
0.722
0.735
0.768
0.822 | -12.866
-10.820
-8.194
-7.655
-5.992
-5.242
-4.699
-3.554
-3.604
-2.826
-2.670
-2.293
-1.706 | -23.228
-45.951
-60.818
-71.849
-87.410
-93.971
-105.709
-111.896
-120.779
-128.518
-132.437
-143.230
-144.474 | | 34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0
42.0
43.0
44.0
45.0
46.0 | 0.289
0.267
0.276
0.231
0.215
0.218
0.162
0.188
0.331
0.671
0.822
0.744
0.745
0.756 | -10.784
-11.479
-11.175
-12.724
-13.355
-13.217
-15.796
-14.505
-9.592
-3.471
-1.701
-2.570
-2.557
-2.425 | -129.264
-149.919
-154.786
-162.131
-179.755
-179.314
150.316
101.424
20.449
-34.435
-80.398
-102.406
-120.374
-128.181 | 19.283
16.963
14.380
11.218
8.435
6.181
4.695
3.671
2.964
1.992
0.906
0.350
0.146
0.042 | 25.703
24.590
23.155
20.999
18.522
15.821
13.433
11.297
9.438
5.985
-0.862
-9.118
-16.688
-27.587 | -13.920
-60.335
-106.453
-153.267
161.897
120.672
80.964
39.388
-9.143
-70.226
-124.255
-164.509
162.943
142.437 | 0.007
0.006
0.003
0.003
0.003
0.006
0.006
0.004
0.007
0.005
0.004
0.012
0.019 | -42.943
-44.688
-49.125
-50.088
-50.724
-44.152
-44.523
-47.382
-43.734
-45.667
-48.650
-38.071
-34.517
-36.790 | -140.352
37.600
29.465
-115.073
-89.514
-113.404
10.595
-175.209
-17.567
45.831
77.675
-38.925
-30.836
-116.379 | 0.227
0.288
0.389
0.414
0.502
0.547
0.582
0.664
0.660
0.722
0.735
0.768
0.822
0.778 | -12.866
-10.820
-8.194
-7.655
-5.992
-5.242
-4.699
-3.554
-3.604
-2.826
-2.670
-2.293
-1.706
-2.186 | -23.228
-45.951
-60.818
-71.849
-87.410
-93.971
-105.709
-111.896
-120.779
-128.518
-132.437
-143.230
-144.474
-154.332 | | 34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0
42.0
43.0
44.0
45.0
46.0
47.0 | 0.289
0.267
0.276
0.231
0.215
0.218
0.162
0.188
0.331
0.671
0.822
0.744
0.745
0.756
0.698 | -10.784
-11.479
-11.175
-12.724
-13.355
-13.217
-15.796
-14.505
-9.592
-3.471
-1.701
-2.570
-2.557
-2.425
-3.125 | -129.264
-149.919
-154.786
-162.131
-179.755
-179.314
150.316
101.424
20.449
-34.435
-80.398
-102.406
-120.374
-128.181
-138.988 | 19.283
16.963
14.380
11.218
8.435
6.181
4.695
3.671
2.964
1.992
0.906
0.350
0.146
0.042
0.039 | 25.703
24.590
23.155
20.999
18.522
15.821
13.433
11.297
9.438
5.985
-0.862
-9.118
-16.688
-27.587
-28.136 | -13.920
-60.335
-106.453
-153.267
161.897
120.672
80.964
39.388
-9.143
-70.226
-124.255
-164.509
162.943
142.437
139.233 | 0.007
0.006
0.003
0.003
0.003
0.006
0.006
0.004
0.007
0.005
0.004
0.012
0.019
0.014
0.008 | -42.943
-44.688
-49.125
-50.088
-50.724
-44.152
-44.523
-47.382
-43.734
-45.667
-48.650
-38.071
-34.517
-36.790
-41.590 | -140.352
37.600
29.465
-115.073
-89.514
-113.404
10.595
-175.209
-17.567
45.831
77.675
-38.925
-30.836
-116.379
4.635 | 0.227
0.288
0.389
0.414
0.502
0.547
0.582
0.664
0.660
0.722
0.735
0.768
0.822
0.778
0.870 | -12.866
-10.820
-8.194
-7.655
-5.992
-5.242
-4.699
-3.554
-3.604
-2.826
-2.670
-2.293
-1.706
-2.186
-1.206 | -23.228
-45.951
-60.818
-71.849
-87.410
-93.971
-105.709
-111.896
-120.779
-128.518
-132.437
-143.230
-144.474
-154.332
-160.348 | | 34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0
42.0
43.0
44.0
45.0
46.0
47.0
48.0 | 0.289
0.267
0.276
0.231
0.215
0.218
0.162
0.188
0.331
0.671
0.822
0.744
0.745
0.756
0.698
0.716 | -10.784
-11.479
-11.175
-12.724
-13.355
-13.217
-15.796
-14.505
-9.592
-3.471
-1.701
-2.570
-2.557
-2.425
-3.125
-2.899 | -129.264
-149.919
-154.786
-162.131
-179.755
-179.314
150.316
101.424
20.449
-34.435
-80.398
-102.406
-120.374
-128.181
-138.988
-145.786 | 19.283
16.963
14.380
11.218
8.435
6.181
4.695
3.671
2.964
1.992
0.906
0.350
0.146
0.042
0.039
0.018 | 25.703
24.590
23.155
20.999
18.522
15.821
13.433
11.297
9.438
5.985
-0.862
-9.118
-16.688
-27.587
-28.136
-34.910 | -13.920
-60.335
-106.453
-153.267
161.897
120.672
80.964
39.388
-9.143
-70.226
-124.255
-164.509
162.943
142.437
139.233
131.635 | 0.007
0.006
0.003
0.003
0.003
0.006
0.006
0.004
0.007
0.005
0.004
0.012
0.019
0.014
0.008
0.013 | -42.943
-44.688
-49.125
-50.088
-50.724
-44.152
-44.523
-47.382
-43.734
-45.667
-48.650
-38.071
-34.517
-36.790
-41.590
-37.614 | -140.352
37.600
29.465
-115.073
-89.514
-113.404
10.595
-175.209
-17.567
45.831
77.675
-38.925
-30.836
-116.379
4.635
-168.514 | 0.227
0.288
0.389
0.414
0.502
0.547
0.582
0.664
0.660
0.722
0.735
0.768
0.822
0.778
0.870
0.840 | -12.866
-10.820
-8.194
-7.655
-5.992
-5.242
-4.699
-3.554
-3.604
-2.826
-2.670
-2.293
-1.706
-2.186
-1.206
-1.514 | -23.228
-45.951
-60.818
-71.849
-87.410
-93.971
-105.709
-111.896
-120.779
-128.518
-132.437
-143.230
-144.474
-154.332
-160.348
-161.626 | | 34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0
42.0
43.0
44.0
45.0
46.0
47.0 | 0.289
0.267
0.276
0.231
0.215
0.218
0.162
0.188
0.331
0.671
0.822
0.744
0.745
0.756
0.698 | -10.784
-11.479
-11.175
-12.724
-13.355
-13.217
-15.796
-14.505
-9.592
-3.471
-1.701
-2.570
-2.557
-2.425
-3.125 | -129.264
-149.919
-154.786
-162.131
-179.755
-179.314
150.316
101.424
20.449
-34.435
-80.398
-102.406
-120.374
-128.181
-138.988 | 19.283
16.963
14.380
11.218
8.435
6.181
4.695
3.671
2.964
1.992
0.906
0.350
0.146
0.042
0.039 | 25.703
24.590
23.155
20.999
18.522
15.821
13.433
11.297
9.438
5.985
-0.862
-9.118
-16.688
-27.587
-28.136 | -13.920
-60.335
-106.453
-153.267
161.897
120.672
80.964
39.388
-9.143
-70.226
-124.255
-164.509
162.943
142.437
139.233 | 0.007
0.006
0.003
0.003
0.003
0.006
0.006
0.004
0.007
0.005
0.004
0.012
0.019
0.014
0.008 | -42.943
-44.688
-49.125
-50.088
-50.724
-44.152
-44.523
-47.382
-43.734
-45.667
-48.650
-38.071
-34.517
-36.790
-41.590 | -140.352
37.600
29.465
-115.073
-89.514
-113.404
10.595
-175.209
-17.567
45.831
77.675
-38.925
-30.836
-116.379
4.635 | 0.227
0.288
0.389
0.414
0.502
0.547
0.582
0.664
0.660
0.722
0.735
0.768
0.822
0.778
0.870 | -12.866
-10.820
-8.194
-7.655
-5.992
-5.242
-4.699
-3.554
-3.604
-2.826
-2.670
-2.293
-1.706
-2.186
-1.206 | -23.228
-45.951
-60.818
-71.849
-87.410
-93.971
-105.709
-111.896
-120.779
-128.518
-132.437
-143.230
-144.474
-154.332
-160.348 | Note: S-parameters are measured on wafer. #### AMMC-6232 Application and Usage Figure 19. Gate Bias Combined Together Figure 20. Separated Gate Bias #### **Biasing and Operation** The AMMC-6232 is normally biased with a positive drain supply connected to the VD1 and VD2 pads through bypass capacitor as shown in Figures 15 and 16. The recommended drain voltage and gate voltage for general usage is 4V and -0.95V respectively. With Vdd=4V, Vg=-0.95V, the corresponding drain current is approximately 135mA. It is important to have at least 0.1upF bypass capacitor and the capacitor should be placed as close to the component as possible. Aspects of the amplifier performance may be improved over a narrower bandwidth by application of additional conjugate, linearity, or low noise (Topt) matching. After adjusting the gate bias to obtain 135mA at Vdd = 4V, the AMMC-6232 can be safely biased at Vdd = 3V or 5V (while fixing the gate bias) as desired. At 4V, the performance is an optimal compromise between power consumption, gain and power/linearity. It is both applicable to be used as a low noise block or driver. At 3V, the amplifier is ideal as a front end low noise block where linearity is not highly required. At 5V, the amplifier can provide ~ 2dB more output power for LO or transmitter driver applications where high output power and linearity are often required. The two gate voltages can be combined as shown in Figure 15 or separated as in Figure 16. Combining the two gate voltages simplifies the usage whereas separating them provides flexibility to overall biasing scheme. In both cases, bonding wires at the input and output in the range of 0.15nH would likely improve the overall Noise Figure and input, output match at most frequencies. No ground wires are needed because ground connection is made with plated through-holes to the backside of the substrate. Refer the Absolute Maximum Ratings table for allowed DC and thermal condition Figure 21. Simplified High Linearity LNA Schematic ### **Assembly Techniques** The backside of the MMIC chip is RF ground. For microstrip applications the chip should be attached directly to the ground plane (e.g. circuit carrier or heatsink) using electrically conductive epoxy [1] For best performance, the topside of the MMIC should be brought up to the same height as the circuit surrounding it. This can be accomplished by mounting a gold plated metal shim (same length as the MMIC) under the chip which is of correct thickness to make the chip and adjacent circuit the same height. The amount of epoxy used for the chip or shim attachment should be just enough to provide a thin fillet around the bottom perimeter of the chip. The ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. RF connections should be kept as short as reasonable to minimize performance degradation due to undesirable series inductance. A single bond wire is normally sufficient for signal connections, however double bonding with 0.7mil gold wire will reduce series inductance. Gold thermo-sonic wedge bonding is the preferred method for wire attachment to the bond pads. The recommended wire bond stage temperature is $150^{\circ}c \pm 2^{\circ}c$. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time. The chip is 100um thick and should be handled with care. This MMIC has exposed air bridges on the top surface and should be handled by the edges or with a custom collet (do not pick up the die with a vacuum on die center). Bonding pads and chip backside metallization are gold. This MMIC is also static sensitive and ESD precautions should be taken For more detailed information see Avago Technolgies' application note #54 "GaAs MMIC assembly and handling quidelines" Notes: [1] Ablebond 84-1 LMI silver epoxy is recommended #### Ordering Information: AMMC-6232-W10 = 10 devices per tray AMMC-6232-W50 = 50 devices per tray Figure 22. Bond Pad Locations For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**