White Electronic Designs

## ENH084V1-300/400 COLOR TFT-LCD MODULE

## GENERAL DESCRIPTION

White Electronic Designs provides optically enhanced solutions to the standard Sharp LQ084V1DG21 color active matrix LCD module. The first enhancement is an index matching (IM) film lamination to the front surface of the display polarizer. The IM film is available in two surface treatments - IM/Clear and IM/110 (a 10\% diffusion). An enhanced brightness version incorporating high efficiency optical films provides and increased luminance of up to 33\%.

This module is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit and a backlight unit. Graphics and text can be displayed on a $640 \times 3$ X 480 dot panel with 262,144 color by supplying 18 -bit data signal ( $6 \mathrm{bit} / \mathrm{color}$ ), four timing signals, $+3.3 \mathrm{~V} /+5 \mathrm{~V}$ DC supply voltage for TFT-LCD panel driving and supply voltage for backlight.

The TFT-LCD panel used for this module is a low-reflection and higher-color-saturation type. Therefore, this module is also suitable for multimedia use. Optimum viewing direction is 12 o'clock.
This module is the type of wide viewing angle and high brightness. Backlight-driving DC/AC inverter is not built in this module.
White assumes no responsibility for any damage resulting from the use of the device which does not comply with the instructions and the precautions specified in these specification sheets. White does assume the responsibility for the warranty of the enhanced product.

MECHANICAL SPECIFICATIONS

| Parameter | Specifications | Units |
| :--- | :---: | :---: |
| Display size | $21(8.4 ")$ Diagonal | cm |
| Active area | $170.9(\mathrm{H}) \times 129.6(\mathrm{~V})$ | mm |
| Pixel format | $640(\mathrm{H}) \times 480(\mathrm{~V})$ | pixel |
| Pixel pitch | $(1$ pixel $=\mathrm{R}+\mathrm{G}+\mathrm{B}$ dots $)$ | - |
| Pixel configuration | $0.267(\mathrm{H}) \times 0.270(\mathrm{~V})$ | mm |
| Display mode | R,G,B vertical stripe | - |
| Unit outline dimensions (1) | Normally white | - |
| Mass | $216.0(\mathrm{~W}) \times 152.4(\mathrm{H}) \times 12.0(\mathrm{D})$ | mm |
| Surface treatment | $410 \pm 20$ | g |
| Note: | $\mathrm{IM} / \mathrm{Clear}$ (glossy) or IM/110 and hardcoat 3H | - |
| 1. Excluding backlight cables and mounting tabs. |  |  |

[^0]White Electronic Designs Corp. reserves the right to change products or specifications without notice.


CN1 pin arrangement from module surface (Transparent view) CN1 Used connector: Corresponding connector:

DF9BA-31P-1V (Hirose Electric Co., Ltd.) DF9-31S-1V (Hirose Electric Co., Ltd.) DF9A-31S-1V (Hirose Electric Co., Ltd.) DF9B-31S-1V(Hirose Electric Co., Ltd.) DF9M-31S-1V(Hirose Electric Co., Ltd.)

| Pin <br> No. | Symbol | Function | Remarks |
| :--- | :---: | :--- | :---: |
| 1 | GND | - | - |
| 2 | CK | Clock signal for sampling each data signal | - |
| 3 | Hsrnc | Horizontal synchronous signal | $(1)$ |
| 4 | VSYNC | Vertical synchronous signal | $(1)$ |
| 5 | GND | - | - |
| 6 | R0 | RED data signal (LSB) | - |
| 7 | R1 | RED data signal | - |
| 8 | R2 | RED data signal | - |
| 9 | R3 | RED data signal | - |
| 10 | R4 | RED data signal | - |
| 11 | R5 | RED data signal (MSB) | - |
| 12 | GND | - | - |
| 13 | G0 | GREEN data signal (LSB) | - |
| 14 | G1 | GREEN data signal | - |
| 15 | G2 | GREEN data signal | - |
| 16 | G3 | GREEN data signal | - |
| 17 | G4 | GREEN data signal | - |
| 18 | G5 | GREEN data signal (MSB) | - |
| 19 | GND | - | - |
| 20 | B0 | BLUE data signal (LSB) | - |
| 21 | B1 | BLUE data signal | - |
| 22 | B2 | BLUE data signal | - |
| 23 | B3 | BLUE data signal | - |
| 24 | B4 | BLUE data signal | - |
| 25 | B5 | BLUE data signal (MSB) | - |
| 26 | GND | - | - |
| 27 | ENAB | Signal to settle the horizontal display position | $(2)$ |
| 28 | Vcc | $+3.3 / 5.0 V$ power supply | - |
| 29 | VcC | $+3.3 / 5.0$ p power supply | - |
| 30 | R/L | Horizontal display mode select signal | $(3)$ |
| 31 | U/D | Vertical display mode select signal | $(4)$ |
|  |  |  |  |

The shielding case is not connected with GND.
Notes:

1. 480 line, 400 line or 350 line mode is selected by the polarity combination of both synchronous signals.
2. The horizontal display start timing is settled in accordance with a rising timing

| Mode | 480 lines | 400 lines | 350 lines |
| :---: | :---: | :---: | :---: |
| $H_{S Y N C}$ | negative | negative | positive |
| $V_{S Y N C}$ | negative | positive | negative | of ENAB signal. In case ENAB is fixed "Low", the horizontal start timing is determined as described in Horizontal Display Position, p.6. Don't keep ENAB "High" during operation.

3. 


4.

> R/L=HIGH, U/D=HIGH


R/L=LOW, U/D=HIGH


| BACKLIGHT DRIVING |  | Used connect <br> CNA, CNB |
| :--- | :---: | :---: |
| Pin No. Symbol Function <br> 1 VHIGH Power supply for lamp (High voltage side) <br> 2 NC This is electrically opened <br> 3 VLow Power supply for lamp (Low voltage side) |  |  |

BHR-03VS-1(JST) SM02(8.0)B-BHS(JST)

## ABSOLUTE MAXIMUM RATINGS

| Parameter | Symbol | Condition | Ratings | Unit | Remark |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input voltage | $\mathrm{V}_{\mathrm{I}}$ | $\mathrm{t}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | $-0.3 \sim \mathrm{~V}_{\mathrm{cc}}+0.3$ | V |  |
| Supply voltage | V cc | $\mathrm{t}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | $0 \sim+6$ | $(1)$ |  |
| Storage temperature | tstG | - | V |  |  |
| Operating temperature (Panel) | Topa | - | $-25 \sim+70$ | ${ }^{\circ} \mathrm{C}$ |  |
| Operating temperature (Ambient) | Topp | - | $0 \sim+63$ | $(2)$ |  |
|  |  |  |  |  |  |

## Notes:

1. CK, RO~R5, GO~G5, BO`B5, HsYnc, VsYnc, ENAB, R/L, U/L
2. Humidity: $95 \%$ RH Max. at $t_{A} \leq 40^{\circ} \mathrm{C}$

Maximum wet-bulb temperature at $39^{\circ} \mathrm{C}$ or less at $t_{A} \leq 40^{\circ} \mathrm{C}$
No condensation.

White Electronic Designs
ENH084V1-300/400

## ELECTRICAL CHARACTERISTICS

$t_{A}=25^{\circ} \mathrm{C}$
TFT-LCD PANEL DRIVING

| Parameter |  | Symbol | MIN | TYP | MAX | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.3 V | Supply voltage | Vcc | +3.0 | +3.3 | +3.6 | V | (1) |
| 5.0V | Supply volgage | Vcc | +4.5 | +5.0 | +5.5 | V |  |
|  | Current dissipation | Icc | - | 410 | 460 | mA | (2) |
| Permissive input ripple voltage |  | VRF | - | - | 100 | mVp-p | Vcc $=+3.3 \mathrm{~V}$ |
| Input voltage (Low) |  | VIL | - | - | 0.3 V cc | V | (3) |
| Input voltage (High) |  | $\mathrm{V}_{\mathrm{IH}}$ | 0.7 Vcc | - | - | V |  |
| Input current (Low) |  | loL1 | - | - | 1.0 | $\mu \mathrm{A}$ | $\mathrm{V}_{1}=0 \mathrm{~V}$ (4) |
|  |  | loL2 | - | - | 60.0 | $\mu \mathrm{A}$ | $\mathrm{V}_{1}=0 \mathrm{~V}$ (5) |
| Input current (High) |  | Іон1 | - | - | 1.0 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {cc }}(6)$ |
|  |  | Іон2 | - | - | 60.0 | $\mu \mathrm{A}$ | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}(7)$ |

Notes:

1. Vcc-turn-on conditions
$0<\mathrm{t} 1 \leq 15 \mathrm{~ms}$
$0<\mathrm{t} 2 \leq 20 \mathrm{~ms}$
$0<\mathrm{t} 3 \leq 1$ s
$1 \mathrm{~s}<\mathrm{t} 4$
Vcc-dip conditions
a. $\quad 2.7 \mathrm{~V} \leq \mathrm{Vcc}<3.0 \mathrm{~V}$
td $\leq 10 \mathrm{~ms}$
b. $\quad \mathrm{Vcc} \leq 2.7 \mathrm{~V}$

Vcc-dip conditions should also follow the Vcc-turn-on conditions

2. Typical current situation: 16-gray-bar pattern 480 line mode $\mathrm{Vcc}=+3.3 \mathrm{~V}$
3. $\mathrm{CK}, \mathrm{R} 0 \sim \mathrm{R} 5, \mathrm{G} 0 \sim \mathrm{G} 5, \mathrm{~B} 0 \sim \mathrm{~B} 5, \mathrm{Hsync}, \mathrm{Vsync}, \mathrm{ENAB}, \mathrm{R} / \mathrm{L}, \mathrm{U} / \mathrm{D}$
4. CK,R0~R5,G0~G5,B0~B5,Hsync,Vsync,ENAB
5. $\mathrm{R} / \mathrm{L}$
6. CK,R0~R5,G0~G5,B0~B5,Hsync,Vsync
7. ENAB,U/D


White Electronic Designs Display Systems Division

## BACKLIGHT DRIVING SECTION

The backlight system is an edge-lighting type with single CCFT (Cold Cathode Fluorescent Tube).
The characteristics of a single lamp are shown in the folliowing table..

| Parameter | Symbol | MIN | TYP | MAX | Unit | Remark |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Lamp current | IL | 2.0 | 6.0 | 6.5 | mArms | $(1)$ |
| Lamp power consumption | PL | - | 2.16 | - | W | $(2)$ |
| Lamp frequency | FL | 20 | 35 | 60 | KHz | $(3)$ |
| Kickoff voltage | V S | - | - | 800 | Vrms | $\mathrm{t}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |
|  | - | - | 1000 | Vrms | $\mathrm{t}_{\mathrm{A}}=0^{\circ} \mathrm{C}(4)$ |  |
| Lamp life time | LL | - | 25000 | - | hour | $(5)$ |



[^1]Note:

1. Lamp current is measured with current meter for high frequency as shown above.
2. At the condition of $\mathrm{YL}=(300) \mathrm{cd} / \mathrm{m} 2)$
3. Lamp frequency may produce interference with horizontal synchronous frequency,and this may cause horizontal beat on the display. Therefore, lamp frequency shall be detached as much as possible from the horizontal synchronous frequency and from the harmonics of horizontal synchronous to avoid interference.
4. The open output voltage of the inverter shall be maintained for more than 1 sec ; otherwise the lamp may not be turned on.
5. Since lamp is consumables, the life time written above is referential value and it is not guaranteed in this specification sheet by White Electronic Designs. Lamp life time is defined that it applied either (1) or (2) under this condition (Continuous turning on at $\mathrm{tA}=25^{\circ} \mathrm{C}, \mathrm{IL}=6 \mathrm{mArms}$ )
6. Brightness becomes $50 \%$ of the original value under standard condition. 2. Kick-off voltage at $\mathrm{tA}=0^{\circ} \mathrm{C}$ exceeds maximum value, 1500 Vrms . In case of operating under lower temp environment, the lamp exhaistion is accelerated and the brightness becomes lower.
(Continuous operating for around 1 month under lower temp condition may reduce the brightness to $50 \%$.)
In case of such usage under lower temp environment, periodical lamp exchange by White is recommended
7. The performance of the backlight, for example life time; or brightness, is extremely infuenced by the characteristics of the DC-AC inverter for the lamp. When designing or ordering the inverter, make sure that poor lighting caused by the mismatch of the backlight and the inverter (mis-lighting,flicker, etc.) do not occur. Once this is confirmed, the module should be operated in the same condition as it is installed in the instrument. Recommemded inverter is "CXA-L0612A-VJL(TDK corporation)".

TIMING CHARACTERISTICS OF INPUT SIGNALS

| Parameter Clock |  | Symbol | Mode | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clock | Frequency | 1/Tc | all | - | 25.18 | 28.33 | MHz |
|  | High Time | Tch | all | 5 | - | - | ns |
|  | Low Time | Tcl | all | 10 | - | - | ns |
| Data | Set up time | Tds | all | 5 | - | - | ns |
|  | Hold time | Tdh | all | 10 | - | - | ns |
| Horizontal sync. signal | Cycle | TH | all | 30.00 | 31.78 | - | $\mu \mathrm{s}$ |
|  |  |  | all | 750 | 800 | 900 | clock |
|  | Pulse width | THp | all | 2 | 96 | 200 | clock |
| Vertical sync. signal | Cycle | TV | 480 | 515 | 525 | 560 | line |
|  |  |  | 400 | 446 | 449 | 480 | line |
|  |  |  | 350 | 447 | 449 | 510 | line |
|  | Pulse width | TVp | all | 1 | - | 34 | line |
| Horizontal display period |  | THd | all | 640 | 640 | 640 | clock |
| Hsync-Clock phase difference |  | THc | all | 10 | - | Tc-10 | ns |
| Hsync.-Vsync. phase difference |  | TVh | all | 0 | - | TH-THp | clock |

Notes:

1. In case of lower frequency, deterioration of the display quality, flicker, etc. may occur.

## HORIZONTAL DISPLAY POSITION

The horizontal display position is determined by ENAB signal and the input data corresponding to the rising edge ENAB signal is displayed at the left end of the active area.

| Parameter |  | Symbol | MIN | TYP | MAX | Unit | Remark |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Enable signal | Set-up time | Tes | 5 | - | Tc-10 | ns | - |
|  | Pulse width | Tep | 2 | 640 | 640 | clock | - |
| Hsync-enable signal phase difference |  | THe | 44 | - | TH-664 | clock | - |

Note

1. When ENAB is fixed at "Low", the display starts from the data of C 104 (clock) as shown above. Be careful the module does not work when ENAB is fixed "High".

## VERTICAL DISPLAY POSITION

The vertical display position is automatically centered in the active area at each mode of VGA, 480-,400-,and 350 -line mode. Each mode is selected depending on the polarity of the synchronous signals described in on page 2 Input Terminals, Note 1.
In each mode, the data of TVn is displayed at the top line of the active area. The display position will be centered
on the screen like the following figure when the period of vertical synchronous signal, TV, is typical value.
In 400 -, and 350 -line mode, the data in the vertical data invalid period is also displayed. So, inputting all data "()" is recommended during vertical data invalid period.
ENAB signal has no relation to the vertical display position.

| Mode | V-data start (TVs) | V-data Perioc (TVd) | V-display Start (TVn) | V-display Period | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 480 | 34 | 480 | 34 | 480 | line |
| 400 | 34 | 400 | $443-T V$ | 480 | line |
| 350 | 61 | 350 | $445-T V$ | 480 | lute |



400 lines mode (TV=449)


INPUT DATA SIGNALS AND DISPLAY POSITION ON THE SCREEN
Display position of input data (480 lines mode)


White Electronic Designs Display Systems Division


White Electronic Designs
Display Systems Division


White Electronic Designs Display Systems Division


INPUT SIGNALS, BASIC DISPLAY COLORS AND GRAY SCALE OF EACH COLOR

|  | Colors \& Grayscale | Data signal |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Gray Scale | R0 | R1 | R2 | R3 | R4 | R5 | G0 | G1 | G2 | G3 | G4 | G5 | B0 | B1 | B2 | B3 | B4 | B5 |
| $\begin{aligned} & \text { 흠 } \\ & \text { O} \\ & \text { 잉 } \end{aligned}$ | Black | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Blue | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | Green | - | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Cyan | - | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | Red | - | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Magenta | - | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | Yellow | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | White | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | Black | GSO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $\uparrow$ | GS1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Darker | GS2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $\uparrow$ | $\downarrow$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | , | $\downarrow$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Brighter | GS61 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $\downarrow$ | GS62 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Red | GS63 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Black | GSO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $\uparrow$ | GS1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Darker | GS2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $\uparrow$ | $\downarrow$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\downarrow$ | $\downarrow$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Brighter | GS61 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $\downarrow$ | GS62 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Green | GS63 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Black | GSO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $\uparrow$ | GS1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
|  | Darker | GS2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
|  | $\uparrow$ | $\downarrow$ | $\downarrow$ |  |  |  |  |  | $\downarrow$ |  |  |  |  |  | $\downarrow$ |  |  |  |  |  |
|  | $\downarrow$ | $\downarrow$ | $\downarrow$ |  |  |  |  |  | $\downarrow$ |  |  |  |  |  | $\downarrow$ |  |  |  |  |  |
|  | Brighter | GS61 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
|  |  | GS62 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
|  | Blue | GS63 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |

1. 0 : Low level voltage 1 : High level voltage
2. Each basic color can be displayed in 64 gray scales from 6 bit data signals. According to the combination of total 18 bit data signals, the 262,144 -color display can be achieved on the screen.

White Electronic Designs
ENH084V1-300/400

## OPTICAL CHARACTERISTICS

$\mathrm{t}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=+5 \mathrm{~V}$

| Parameter |  | $\begin{gathered} \text { Symbol } \\ \hline \theta 21, \theta 22, \theta 11 \end{gathered}$ |  | $\frac{\operatorname{Min}}{45}$ | $\frac{\text { Typ }}{55}$ | Max |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Viewing Angle Range | Horizontal |  | $(C R \geq 10)$ |  |  |  | Deg. | (4) |
|  | Vertical | $\theta 12$ |  | 30 | 40 | - | Deg. |  |
| Contrast Ratio |  | CR | $\theta=0^{\circ}$ | - | 250 | - | - | $(2,4)$ |
| Response Time | Rise | тr |  | - | 20 | - | ms | $(3,4)$ |
|  | Decay | $\tau$ d |  | - | 40 | - | ms |  |
| Luminance of White | IM Film | YL |  | 240 | 300 | - | $\mathrm{cd} / \mathrm{m}^{2}$ | (4) |
|  | Enhanced Film Stack |  |  | 300 | 400 |  |  |  |
| Chromaticity of White |  | $x$ |  | - | 0.319 | - | - |  |
| Chromaticity of White |  | y |  | - | 0.329 | - | - |  |
| White Uniformity |  | \%w |  | - | - | 1.45 | - | (5) |
| Viewing Angle Range | Horizontal | ө21, $\theta 22$ | $50 \%$ of the | - | 45 | - | Deg. |  |
| as a Brightness | Vertical | $\theta 11$ | maximum | - | 30 | - | Deg. | (1) |
| Definition | Verical | $\theta 12$ | brightness | - | 35 | - | Deg. |  |

The measurements shall be executed 30 minutes after lighting at rating. (typical condition: lı=6mArms)
The optical characteristics shall be measured in a dark room or equivalent state with the method shown in Fig. 3 below.


Notes:

1. Definition of viewing angle range:
2. Definition of contrast ratio

The contrast ratio is defined as follows: Contrast Ratio (CR) $=\frac{\text { Luminance (brightness) with all pixels white }}{\text { Luminance (brightness) with all pixels black }}$
3. Definition of response time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".
4. This shall be measured at the center of the screen.
5. Definition of white uniformity:

White uniformity is defined as the following with five measurements. (A~E).


[^2]

## DISPLAY QUALITY

The display quality of the color TFT-LCD module shall be in compliance with the Incoming Inspection Standard.

## HANDLING PRECAUTIONS

1. Be sure to turn off the power supply when inserting or disconnecting the cable.
2. Design the cabinet so that the module can be installed without any extra stress such as warp or twist.
3. Since the front polarizer is easily damaged, pay attention to avoid rubbing with something hard or sharp.
4. Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
5. When the panel surface is soiled, use an absorbent cotton or other soft cloth to wipe it off.
6. Since the panel is made of glass and refined wires and components, it may break, crack or internal wire breaking if dropped or bumped on hard surface. Handle with care.
7. Since CMOS LSI is used in this module, make certain one is grounded when handling.
8. Observe all other precautionary requirements in handling components.
9. This module has its circuitry PCBs on the rear side and should be carefully handled in order to avoid being stressed.
10. Laminated film is attached to the module surface to prevent it from being scratched. Before use, peel the film off slowly, with strict attention to electrostatic charges. lonized air shall be blown over during the action. Blow off 'dust' on the polarizer by using an ionized nitrogen gun.
11. Connect GND to 4 place of mounting holes to stabilize against EMI and external noise
12. The high voltage portions on the backlight are very dangerous. Careless handling may lead to electrical shock.

## PACKING FORM

1. Piling number of cartons: MAX 8
2. Package quantity in one carton: 20 pcs
3. Carton size: $483(\mathrm{~W}) \times 275(\mathrm{D}) \times 330(\mathrm{H}) \mathrm{mm}$
4. Total mass of 1 carton filled with full modules : 10.5 kg

## OTHERS

1. Disassembling the module can cause permanent damage and should be avoided.
2. Image retention may occur when a fixed pattern is displayed for a long time.
3. Do not use LCD module in the atmosphere of corrosive gasses, such as sulfide gas or chlorine gases, which can damage the display.

RELIABILITY TEST ITEMS

| No. | Test items | Conditions | 240 h |
| :--- | :--- | :--- | :--- |
| 1 | High temperature storage test | $\mathrm{t}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ | 240 h |
| 2 | Low temperature storage test | $\mathrm{t}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ | 240 h |
| 3 | High temperature and high humidity <br> operating test | $\mathrm{t}_{A}=40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$ <br> $(\mathrm{No}$ condensation $)$ | 240 h |
| 4 | High temperature operating test | $\mathrm{t}_{\mathrm{A}}=60^{\circ} \mathrm{C}$ | 240 h |
| 5 | Low temperature operating test | $\mathrm{t}_{A}=-0^{\circ} \mathrm{C}$ | $: 10 \sim 57 \mathrm{~Hz} /$ Vibration width (one side): 0.075 mm |
| 6 | Vibration Test <br> (Non-operating) | Frequency <br> Sweep time <br> Test Period | $: 11$ minutes <br> $: 3$ hours (1 hour for each direction of $\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ |
| 7 | Shock test <br> (non-operating) | Max gravity <br> Pulse width <br> Direction | $: 490 \mathrm{~m} / \mathrm{s}^{2}$ <br> $: 11 \mathrm{minutes}$ <br> $: \pm \mathrm{X}, \pm \mathrm{Y}, \pm \mathrm{Z}$ (once for each direction.) |



White Electronic Designs



[^0]:    Note: This measurement is typical, and see Fig. 3 for details

[^1]:    Notes:

[^2]:    $\delta \mathrm{w}=\frac{\text { Maximum Luminance of five points (brightness) }}{\text { Minimum Luminance of five points (brightness) }}$

