

SPICE Device Model Si6933DQ

Vishay Siliconix

Dual P-Channel Enhancement-Mode MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- · Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit mode is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 71734 www.vishay.com 12-Oct-01

SPICE Device Model Si6933DQ

Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	2.13		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS}>-5V,V_{GS}=-10V$	132		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -10V, I_D = -3.5A$	0.034	0.035	Ω
		$V_{GS} = -4.5V$, $I_D = -2.5A$	0.054	0.062	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -15V, I_{D} = -3.5A$	9.6	7.2	S
Diode Forward Voltage ^a	V _{SD}	$I_S = -1.25A$, $V_{GS} = 0V$	- 0.78	- 0.77	V
Dynamic ^b					
Total Gate Charge	Qg	V_{DS} = $-15V$, V_{GS} = $-10V$, I_{D} = $-3.5A$	18	17	nC
Gate-Source Charge	Q_{gs}		4.4	4.4	
Gate-Drain Charge	Q_{gd}		3.1	3.1	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -15V, R_L = 15\Omega$ $I_D \cong -1A, V_{GEN} = -10V, R_G = 6\Omega$	14	13	ns
Rise Time	t _r		7.8	10	
Turn-Off Delay Time	$t_{d(off)}$		21	33	
Fall Time	t _f		11	10	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = -1.25A$, di/dt = 100A/ μ s	30	30	

www.vishay.com Document Number: 71734

Notes a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.

Document Number: 71734 www.vishay.com 12-Oct-01 3