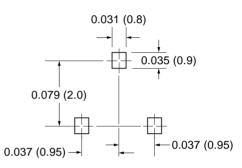


New Product

Vishay Semiconductors formerly General Semiconductor

BCW61 Series

Small Signal Transistors (PNP)



Dimensions in inches and (millimeters)

Features

- PNP Silicon Epitaxial Planar Transistors
- Suited for low level, low noise, low frequency applications in hybrid cicuits.
- Low Current, Low Voltage.
- As complementary types, BCW60 Series NPN transistors are recommended.

Mounting Pad Layout

Mechanical Data

Case: SOT-23 Plastic Package

Weight: approx. 0.008g

BCW61A = BA
BCW61B = BB
BCW61C = BC
BCW61D = BD

Packaging Codes/Options:

E8/10K per 13" reel (8mm tape), 30K/box E9/3K per 7" reel (8mm tape), 30K/box

Maximum Ratings & Thermal Charac	teristics Ratings at 25°C ambient temperature unless otherwise specified.
----------------------------------	---

Parameter	Symbol	Value	Unit	
Collector-Emitter Voltage (V _{BE} = 0)	-Vces	32	V	
Collector-Emitter Voltage	-Vceo	32	V	
Emitter-Base Voltage	–Vebo	5.0	V	
Collector Current (DC)	–Ic	100	mA	
Peak Collector Current	-Ісм	200	mA	
Base Current (DC)	-lB	50	mA	
Power Dissipation	Ptot	250	mW	
Maximum Junction Temperature	Tj	150	°C	
Storage Temperature Range	Tstg	-65 to +150	°C	
Thermal Resistance, Junction to Ambient Air	Reja	500 ⁽¹⁾	°C/W	

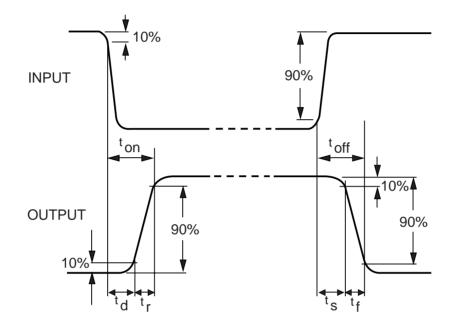
Note:

(1) Mounted on FR-4 printed-ciruit board.

BCW61 Series

Vishay Semiconductors formerly General Semiconductor

Electrical Characteristics Ratings at 25°C ambient temperature unless otherwise specified.


		Symbol	Min.	TYP.	Max.	Unit
DC Current Gain						
at $-V_{CE} = 5 V$, $-I_{C} = 10 \mu A$	BCW61A	hFE	_	_	_	_
at $-V_{CE} = 5 V$, $-I_{C} = 10 \mu A$	BCW61B	hFE	30	_	_	_
at $-V_{CE} = 5 V$, $-I_{C} = 10 \mu A$	BCW61C	hFE	40	_	_	_
at $-V_{CE} = 5 V$, $-I_{C} = 10 \mu A$	BCW61D	hfe	100	_	_	_
at $-VCE = 5 V$, $-IC = 2 mA$	BCW61A	hFE	120	_	220	_
$at - V_{CE} = 5 V, -I_{C} = 2 mA$	BCW61B	hfe	180	-	310	-
at $-V_{CE} = 5 V$, $-I_C = 2 mA$	BCW61C	hFE	250	_	460	_
at –Vce = 5 V, –Ic = 2 mA	BCW61D	hFE	380	-	630	-
at –Vce = 1 V, –Ic = 50 mA	BCW61A	hFE	60	-	-	-
at -Vce = 1 V, -Ic = 50 mA	BCW61B	hfe	80	-	-	-
at -Vce = 1 V, -Ic = 50 mA	BCW61C	hfe	100	-	-	-
at –Vce = 1 V, –Ic = 50 mA	BCW61D	hfe	110	-	-	-
Collector-Emitter Saturation Voltage						
at $-I_C = 10 \text{ mA}$, $-I_B = 0.25 \text{ mA}$		–Vcesat	60	_	250	mV
at $-I_C = 50 \text{ mA}$, $-I_B = 1.25 \text{ mA}$		-VCEsat	120	_	550	mV
		- V CESal	120		550	1110
Base-Emitter Saturation Voltage						
at –Ic = 10 mA, –I _B = 0.25 mA		-VBEsat	600	-	850	mV
at $-Ic = 50 \text{ mA}, -IB = 1.25 \text{ mA}$		–VBEsat	680	_	1050	mV
Base-Emitter Voltage						
at $-V_{CE} = 5 \text{ V}, -I_C = 2 \text{ mA}$		–Vbe	600	650	750	m∨
at $-V_{CE} = 5 V$, $-I_{C} = 10 \mu A$		-VBE	_	550	_	mV
$at -V_{CE} = 1 V, -I_{C} = 50 mA$		-VBE	_	720	_	mV
Collector-Emiter Cut-off Current						
		1				
at $-V_{CE} = 32 \text{ V}, V_{EB} = 0$		-ICES	_	-	20	nA
$at - V_{CE} = 32 V, V_{EB} = 0, T_A = 150^{\circ}C$			_	_	20	μΑ
Emitter-Base Cut-off Current					20	nA
at $-V_{EB} = 4 V$, IC=0		—I _{ЕВО}	_	_	20	
Gain-Bandwidth Product						
at $-V_{CE} = 5 \text{ V}$, $-I_{C} = 10 \text{ mA}$, f = 100 MHz		fт	100	-	-	MHz
Collector-Base Capacitance		Ссво	_	4.5	_	pF
at -V _{CB} = 10 V, f = 1 MH _Z , I _E =0						
Emitter-Base Capacitance		Сево		11		рF
at –VEB = 0.5 V, f = 1 MHz, IC=0		CEBO	_		_	pr
Noise Figure						
at $-V_{CE} = 5 \text{ V}$, $-I_C = 200 \mu\text{A}$, $R_S = 2 k\Omega$, $f = 100 \mu\text{A}$) kHz B = 200Hz	F	—	2	6	dB
· · ·						
Small Signal Current Gain	BCW60A		-	200		
at $-V_{CE} = 5V$, $-I_C = 2$ mA, f = 1.0 kHz	BCW60B	h _{fe}	-	260		
	BCW60C		—	330		
	BCW60D		_	520		
Turn-on Time at $R_L = 990\Omega$ (see fig. 1)						
$-V_{CC} = 10V, -I_{C} = 10MA, -I_{B(on)} = I_{B(off)} =$	= 1mA	ton	—	85	150	ns
Turn-off Time at $R_L = 990\Omega$ (see fig. 1)		4		400	000	
$-V_{CC} = 10V, -I_{C} = 10mA, -I_{B(on)} = I_{B(off)} =$		toff	_	480	800	l ns

BCW61 Series

Vishay Semiconductors formerly General Semiconductor

Fig. 1 - Switching Waveforms

