Six-Channel Discrete-to-Digital Interface Sensing Open / Ground Signals

DESCRIPTION

The HI-8420 is a six channel discrete-to-digital interface device. Mixed-signal CMOS technology is used to provide superior low-power performance. The HI-8420 has six separate Open / Ground sensing inputs. The device outputs are CMOS / TTL compatible and may be disabled (tri-state) using the $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ pins.

The device is a drop-in replacement for the DEI1026. For added functionality, the Holt HI-8422 offers eight channels of Open / Ground sensing and eight channels of 28 V / Ground sensing in a single device.

The HI-8420 is offered in a small footprint 16-pin plastic package. Please contact the Holt sales department for other packaging options.

FEATURES

- Six independent Open / Ground sensing channels
- 5.0 V single supply operation
- Low power CMOS technology
- Military processing options available
- Drop in replacement for DEI1026

FUNCTION TABLE

Discrete Input	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	Output
Open	0	0	0
Ground	0	0	1
X	1	X	High Z
X	X	1	High Z

PIN CONFIGURATION

16-Pin Plastic SOIC package (Narrow Body)

BLOCK DIAGRAM

PIN DESCRIPTIONS

PIN	SYMBOL	FUNCTION	
1	DESCRIPTION		
2	IN1	Discrete Input	Open / Ground sensing input, channel 1
3	IN3	Discrete Input	Open / Ground sensing input, channel 2
4	IN4	Discrete Input	Open / Ground sensing input, channel 3
5	IN5	Discrete Input	Open / Ground sensing input, channel 4
6	IN6	Discrete Input	Open / Ground sensing input, channel 5 input, channel 6
7	$\overline{\text { OE }}$	Digital input	Output Enable. OUT1-OUT6 are high-impedance if OE is high
8	$\overline{\text { CE }}$	Digital input	Chip Enable. OUT1-OUT6 are high-impedance if CE is high
9	VDD	Power	Positive supply voltage 5.0 V
10	OUT6	Tri-state output	Logic output, channel 6
11	OUT5	Tri-state output	Logic output, channel 5
12	OUT4	Tri-state output	Logic output, channel 4
13	OUT3	Tri-state output	Logic output, channel 3
14	OUT2	Tri-state output	Logic output, channel 2
15	OUT1	Tri-state output	Logic output, channel 1
16	GND	Power	Ground

ABSOLUTE MAXIMUM RATINGS

Supply voltage (VDD)	-0.3 V to +7 V
Logic input voltage range	-0.3 V to +5.5 V
Discrete input voltage range	-5 V to +35 V
Power dissipation at $25^{\circ} \mathrm{C}$	350 mW
Solder temperature	$275^{\circ} \mathrm{C}$ for 10 sec
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Supply Voltage VDD	4.5 V to 5.5 V	
Operating Temperature Range		
Industrial Screening	\ldots.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Hi-Temp Screening	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

ELECTRICAL CHARACTERISTICS

$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=\mathrm{OV}, \mathrm{TA}=$ Operating Temperature Range (unless otherwise specified).

| PARAMETER | SYMBOL | CONDITION | MIN | TYP | MAX | UNITS |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DISCRETE INPUTS | VsG | Input voltage to give high output | | | 3.0 | V |
| Ground state input voltage | Vso | Input voltage to give low output | 3.5 | | | V |
| Open state input voltage | RIG | Resistor from input to ground
 to give high output | 0 | | 100 | Ω |
| Ground state input resistor | RIO | Resistor from input to ground
 to give low output | 100 | | | $\mathrm{~K} \Omega$ |
| Open state input resistor | IIO | Current sourced into 100Ω
 to ground | -100 | -330 | | $\mathrm{\mu A}$ |
| Input source current | IIR | VIN $=35 \mathrm{~V}, \mathrm{VDD}=0 \mathrm{~V}$ | | | 5.0 | mA |
| Reverse leakage current | | | | | | |

ELECTRICAL CHARACTERISTICS (Cont.)

$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=$ Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
LOGIC INPUTS ($\overline{\mathrm{CE}, \overline{\mathrm{OE}})}$						
Input Voltage Input voltage HI Input voltage LO	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$		2.0		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input currentInput sink Input source	$\begin{aligned} & \hline \mathrm{IH} \\ & \mathrm{ILL} \end{aligned}$	$\begin{aligned} & \mathrm{VIH}=\mathrm{VDD} \\ & \mathrm{VIL}=0 \mathrm{~V} \end{aligned}$	-1.0		1.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
OUTPUTS						
$\begin{array}{lr}\text { Logic output voltage } & \text { High } \\ \text { Low }\end{array}$	$\overline{\mathrm{VOH}}$ Vol	$\begin{aligned} \hline \mathrm{IOH} & =-5 \mathrm{~mA} \\ \mathrm{IOL} & =5 \mathrm{~mA} \end{aligned}$	2.4		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{array}{lr}\text { Logic output voltage (CMOS) } & \text { High } \\ \text { Low }\end{array}$	Vor VoL	$\begin{aligned} & \text { IOH }=-100 \mathrm{uA} \\ & \mathrm{IOL}=100 \mathrm{uA} \end{aligned}$	VDD - 0.2		0.2	
Tri-state output current	loz	Vout $=0 \mathrm{~V}$ or VDD			± 10	$\mu \mathrm{A}$
SUPPLY CURRENT						
VDD current	IDD	VIN = VdD (all inputs)		5	10	mA
SWITCHING CHARACTERISTICS						
Propagation delay IN to OUT	tLL, thL				150	ns
Output enable time	tzL, tzH	From $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$			25	ns
Output disable time	tız, thz	From $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$			25	ns

TIMING DIAGRAMS

ORDERING INFORMATION

PART NUMBER	PACKAGE DESCRIPTION	TEMPERATURE RANGE	PROCESS FLOW	BURN IN	LEAD FINISH
HI-8420PSI	16 PIN PLASTIC SOIC (NARROW BODY)	$-40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C}$	I	NO	SOLDER
HI-8420PST	16 PIN PLASTIC SOIC (NARROW BODY)	$-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$	T	NO	SOLDER

16-PIN PLASTIC SMALL OUTLINE (SOIC) - NB

(Narrow Body)

