Triple Schmitt-Trigger Inverter The NL37WZ14 is a high performance triple inverter with Schmitt-Trigger inputs operating from a 1.65 to 5.5 V supply. Pin configuration and function are the same as the NL37WZ04, but the inputs have hysteresis, and with its Schmitt trigger function, the NL37WZ14 can be used as a line receiver which will receive slow input signals. The NL37WZ14 is capable of transforming slowly changing input signals into sharply defined, jitter–free output signals. In addition, it has a greater noise margin than conventional inverters. The NL37WZ14 has hysteresis between the positive–going and the negative–going input thresholds (typically 1.0 V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations. - Designed for 1.65 V to 5.5 V V_{CC} Operation - Over Voltage Tolerant Inputs and Outputs - \bullet LVTTL Compatible Interface Capability with 5 V TTL Logic with V_{CC} = 3 V - LVCMOS Compatible - 24 mA Balanced Output Sink and Source Capability - Near Zero Static Supply Current Substantially Reduces System Power Requirements - Current Drive Capability is 24 mA at the Outputs - Chip Complexity: FET = 94 Figure 1. Pinout (Top View) Figure 2. Logic Symbol # ON Semiconductor® http://onsemi.com MARKING DIAGRAM US8 US SUFFIX CASE 493 LA = Device Code D = Date Code # **PIN ASSIGNMENT** | 1 | IN A1 | |---|--------------------| | 2 | OUT Y 3 | | 3 | IN A2 | | 4 | GND | | 5 | OUT Y2 | | 6 | IN A3 | | 7 | OUT Y1 | | 8 | V _{CC} | ## **FUNCTION TABLE** | A Input | ▼ Output | |---------|-----------------| | L | Н | | н | L | # ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. # **MAXIMUM RATINGS** | Symbol | Parameter | | Value | Unit | |------------------|---|--|------------------------|------| | V _{CC} | DC Supply Voltage | | -0.5 to +7.0 | V | | VI | DC Input Voltage | | -0.5 to +7.0 | V | | Vo | DC Output Voltage | | -0.5 to +7.0 | V | | I _{IK} | DC Input Diode Current | V _I < GND | -50 | mA | | I _{OK} | DC Output Diode Current | V _O < GND | -50 | mA | | I _O | DC Output Sink Current | | ±50 | mA | | I _{CC} | DC Supply Current per Supply Pin | | ±100 | mA | | I _{GND} | DC Ground Current per Ground Pin | | ±100 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds | 3 | 260 | °C | | TJ | Junction Temperature under Bias | | +150 | °C | | θ_{JA} | Thermal Resistance | (Note 1) | 250 | °C/W | | P _D | Power Dissipation in Still Air at 85°C | | 250 | mW | | MSL | Moisture Sensitivity | | Level 1 | | | F _R | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | | V _{ESD} | ESD Withstand Voltage | Human Body Model (Note 2)
Machine Model (Note 3)
Charged Device Model (Note 4) | > 2000
> 200
N/A | V | Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions. - Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow. Tested to EIA/JESD22-A114-A. - 3. Tested to EIA/JESD22-A115-A. - 4. Tested to JESD22-C101-A. # **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | | Min | Max | Unit | |-----------------|------------------------------------|---|-------------|----------------------------------|------| | V _{CC} | Supply Voltage | Operating
Data Retention Only | 2.3
1.5 | 5.5
5.5 | V | | VI | Input Voltage | (Note 5) | 0 | 5.5 | V | | V _O | Output Voltage | (HIGH or LOW State) | 0 | 5.5 | V | | T _A | Operating Free–Air Temperature | | -40 | +85 | °C | | Δt/ΔV | Input Transition Rise or Fall Rate | $V_{CC} = 2.5 \text{ V } \pm 0.2 \text{ V}$
$V_{CC} = 3.0 \text{ V } \pm 0.3 \text{ V}$
$V_{CC} = 5.0 \text{ V } \pm 0.5 \text{ V}$ | 0
0
0 | No Limit
No Limit
No Limit | ns/V | ^{5.} Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level. # DC CHARACTERISTICS | | | | V _{CC} | T _A | = 25°C | | -40°C ≤ | T _A ≤ 85°C | | |------------------|-------------------------------------|--|-----------------|----------------------|----------|------|----------------------|-----------------------|------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Unit | | V _T + | Positive Input Threshold | | 2.3 | 1.0 | 1.5 | 1.8 | 1.0 | 1.8 | V | | | Voltage | | 2.7 | 1.2 | 1.7 | 2.0 | 1.2 | 2.0 | | | | | | 3.0 | 1.3 | 1.9 | 2.2 | 1.3 | 2.2 | | | | | | 4.5 | 1.9 | 2.7 | 3.1 | 1.9 | 3.1 | | | | | | 5.5 | 2.2 | 3.3 | 3.6 | 2.2 | 3.6 | | | V _T - | Negative Input Threshold Voltage | | 2.3 | 0.4 | 0.75 | 1.15 | 0.4 | 1.15 | V | | | | | 2.7 | 0.5 | 0.87 | 1.4 | 0.5 | 1.4 | | | | | | 3.0 | 0.6 | 1.0 | 1.5 | 0.6 | 1.5 | | | | | | 4.5 | 1.0 | 1.5 | 2.0 | 1.0 | 2.0 | | | | | | 5.5 | 1.2 | 1.9 | 2.3 | 1.2 | 2.3 | | | V _H | Input Hysteresis Voltage | | 2.3 | 0.25 | 0.75 | 1.1 | 1.25 | 1.1 | V | | | | | 2.7 | 0.3 | 0.83 | 1.15 | 0.3 | 1.15 | | | | | | 3.0 | 0.4 | 0.93 | 1.2 | 0.4 | 1.2 | | | | | | 4.5 | 0.6 | 1.2 | 1.5 | 0.6 | 1.5 | | | | | | 5.5 | 0.7 | 1.4 | 1.7 | 0.7 | 1.7 | | | V _{OH} | High-Level Output Voltage | I _{OH} = -100 μA | 1.65 to 5.5 | V _{CC} -0.1 | V_{CC} | | V _{CC} -0.1 | | V | | | $V_{IN} = V_{IH}$ or V_{IL} | $I_{OH} = -3 \text{ mA}$ | 1.65 | 1.29 | 1.52 | | 1.29 | | | | | | $I_{OH} = -8 \text{ mA}$ | 2.3 | 1.9 | 2.1 | | 1.9 | | | | | | $I_{OH} = -12 \text{ mA}$ | 2.7 | 2.2 | 2.4 | | 2.2 | | | | | | $I_{OH} = -16 \text{ mA}$ | 3.0 | 2.4 | 2.7 | | 2.4 | | | | | | $I_{OH} = -24 \text{ mA}$ | 3.0 | 2.3 | 2.5 | | 2.3 | | | | | | $I_{OH} = -32 \text{ mA}$ | 4.5 | 3.8 | 4.0 | | 3.8 | | | | V _{OL} | Low-Level Output Voltage | I _{OL} = 100 μA | 1.65 to 5.5 | | | 0.1 | | 0.1 | V | | | $V_{IN} = V_{IH}$ or V_{IL} | $I_{OL} = 4 \text{ mA}$ | 1.65 | | 0.08 | 0.24 | | 0.24 | | | | | $I_{OL} = 8 \text{ mA}$ | 2.3 | | 0.2 | 0.3 | | 0.3 | | | | | I _{OL} = 12 mA | 2.7 | | 0.22 | 0.4 | | 0.4 | | | | | I _{OL} = 16 mA | 3.0 | | 0.28 | 0.4 | | 0.4 | | | | | I _{OL} = 24 mA | 3.0 | | 0.38 | 0.55 | | 0.55 | | | | | I _{OL} = 32 mA | 4.5 | | 0.42 | 0.55 | | 0.55 | | | I _{IN} | Input Leakage Current | V _{IN} = V _{CC} or GND | 0 to 5.5 | | | ±0.1 | | ±1.0 | μΑ | | I _{OFF} | Power Off-Output Leakage
Current | V _{OUT} = 5.5 V | 0 | | | 1 | | 10 | μΑ | | Icc | Quiescent Supply Current | $V_{IN} = V_{CC}$ or GND | 5.5 | | | 1 | | 10 | μΑ | # AC ELECTRICAL CHARACTERISTICS (Input $t_f = t_f = 3.0 \text{ ns}$) | | | | V _{CC} | T _A = 25°C | | C | $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 85^{\circ}\text{C}$ | | | |------------------|----------------------------------|--|-----------------|-----------------------|-----|-----|--|-----|------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Unit | | t _{PLH} | Propagation Delay | $R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$ | 2.5 ± 0.2 | 1.8 | 4.3 | 7.4 | 1.8 | 8.1 | ns | | t _{PHL} | Input A to Y
(Figure 3 and 4) | $R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$ | 3.3 ± 0.3 | 1.5 | 3.3 | 5.0 | 1.5 | 5.5 | | | | | $R_L = 500 \Omega, C_L = 50 pF$ | | 1.8 | 4.0 | 6.0 | 1.8 | 6.6 | | | | | $R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$ | 5.0 ± 0.5 | 1.0 | 2.7 | 4.1 | 1.0 | 4.5 | | | | | $R_L = 500 \Omega, C_L = 50 pF$ | | 1.2 | 3.2 | 4.9 | 1.2 | 5.4 | | # **CAPACITIVE CHARACTERISTICS** | Symbol | Parameter | Condition | Typical | Unit | |-----------------|-------------------------------|--|---------|------| | C _{IN} | Input Capacitance | $V_{CC} = 5.5 \text{ V}, V_I = 0 \text{ V or } V_{CC}$ | 2.5 | pF | | C _{PD} | Power Dissipation Capacitance | 10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC} | 11 | pF | | | (Note 6) | 10 MHz, V_{CC} = 5.0 V, V_{I} = 0 V or V_{CC} | 12.5 | | ^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. *C_L includes all probe and jig capacitances. A 1-MHz square input wave is recommended for propagation delay tests. Figure 3. Switching Waveforms Figure 4. Test Circuit Figure 5. Typical Input Threshold, $V_T{}^+,\,V_T{}^-$ versus Power Supply Voltage (b) A Schmitt-Trigger Offers Maximum Noise Immunity Figure 6. Typical Schmitt-Trigger Applications # **DEVICE ORDERING INFORMATION** | | Device Nomenclature | | | | | | | | |------------------------|-------------------------------|--------------------------------|-----------------------------|------------|--------------------|-------------------|-----------------|-----------------------| | Device Order
Number | Logic
Circuit
Indicator | No. of
Gates per
Package | Temp
Range
Identifier | Technology | Device
Function | Package
Suffix | Package
Type | Tape and
Reel Size | | NL37WZ14US | NL | 3 | 7 | WZ | 14 | US | US8 | 178 mm,
3000 Unit | ## PACKAGE DIMENSIONS # US8 **US SUFFIX** CASE 493-01 **ISSUE O** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS - CONTROLLING DIMENSION: MILLIMETERS DIMENSION "A" DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR. MOLD FLASH. PROTRUSION AND GATE BURR SHALL NOT EXCEED 0.140 MM (0.0055") PER SIDE. 4. DIMENSION "B" DOES NOT INCLUDE - INTER-LEAD FLASH OR PROTRUSION. INTER-LEAD FLASH AND PROTRUSION SHALL NOT E3XCEED 0.140 (0.0055") PER SIDE - 5 LEAD FINISH IS SOLDER PLATING WITH THICKNESS OF 0.0076-0. 0203 MM. (300-800 INCH). 6. ALL TOLERANCE UNLESS OTHERWISE - SPECIFIED ±0.0508 (0.0002"). | | MILLIN | IETERS | INC | HES | |-----|---------|--------|-------|-------| | DIM | MIN MAX | | MIN | MAX | | Α | 1.90 | 2.10 | 0.075 | 0.083 | | В | 2.20 | 2.40 | 0.087 | 0.094 | | С | 0.60 | 0.90 | 0.024 | 0.035 | | D | 0.17 | 0.25 | 0.007 | 0.010 | | F | 0.20 | 0.35 | 0.008 | 0.014 | | G | 0.50 | BSC | 0.020 | BSC | | Н | 0.40 | REF | 0.016 | REF | | J | 0.10 | 0.18 | 0.004 | 0.007 | | K | 0.00 | 0.10 | 0.000 | 0.004 | | L | 3.00 | 3.20 | 0.118 | 0.126 | | M | 0 ° | 6 ° | 0 ° | 6 ° | | N | 5° | 10 ° | 5 ° | 10 ° | | P | 0.28 | 0.44 | 0.011 | 0.017 | | R | 0.23 | 0.33 | 0.009 | 0.013 | | S | 0.37 | 0.47 | 0.015 | 0.019 | | U | 0.60 | 0.80 | 0.024 | 0.031 | | V | 0.12 | BSC | 0.004 | RSC | # -T-0.10 (0.004) SEATING PLANE **R 0.10 TYP** 0.10 (0.004) M \oplus Τ F **DETAIL E** ## **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partnif rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.