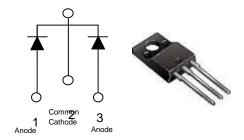


Super Barrier Rectifier TM


Using state-of-the-art SBR IC process technology, the following features are made possible in a single device:

Major ratings and characteristics

Characteristics	Values	Units	
I _{F(AV)} Rectangular Waveform	20	Α	
V_{RRM}	40	V	
V _F @10A, Tj=125°C	0.41	V, typ	
Tj(operating/storage)	-65 to 175	°C	

ELECTRICAL:

- * Ultra Low Forward Voltage Drop
- * High Thermal SBR Reliability
- * Reliable High Temperature Operation
- * Super Barrier Design
- * Softest, fast switching capability
- * 175°C Operating Junction Temperature

Device optimized for low forward voltage drop to maximize efficiency in Power Supply applications

MECHANICAL:

* Molded Plastic ITO-220 package

Maximum Ratings and Electrical Characteristics						
(at 25°C unless otherwise specified)						
	SYMBOL			UNITS		
DC Blocking Voltage Working Peak Reverse Voltage Peak Repetitive Reverse Voltage	$egin{array}{c} egin{array}{c} egin{array}{c} V_{RM} \ V_{RRM} \end{array}$	40		Volts		
RMS Reverse Voltage	$V_{R(RMS)}$	40		Volts		
Average Rectified Forward Current (Rated V _R -20Khz Square Wave)-50% duty cycle	Io	20		Amps		
Peak Forward Surge Current - 1/2 60hz	I _{FSM}	180		Amps		
Peak Repetitive Reverse Surge Current (2uS-2Khz)	I _{RRM}	3		Amps		
Instantaneous Forward Voltage (per leg) $I_F = 10A; T_J = 25^{\circ}C$ $I_F = 20A; T_J = 25^{\circ}C$ $I_F = 10A; T_J = 125^{\circ}C$	V _F	Typ 0.44 0.56 0.41	Max 0.48 0.60 0.45	Volts		
Maximum Reverse Current at Rated V_{RM} $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	I _R *	Тур .22 20	Max 1 100	mA mA		
Maximum Rate of Voltage Change (at Rated V_R)	dv/dt	10,000		V/uS		
Maximum Thermal Resistance JC	R⊕ _{JC}	2		°C/W		
Operating and Storage Junction Temperature	T _J	-65 to +175		°C		

NOTE: Dice are available for customer applications.

^{*} Pulse width < 300 uS, Duty cycle < 2%

APD Semiconductor, Inc.

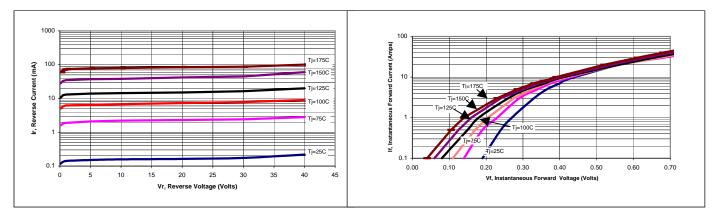


Figure 1: Typical Reverse Current

Figure 2: Typical Forward Voltage

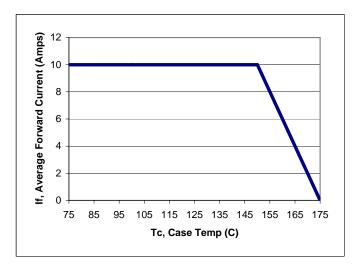


Figure 3: Current Derating, Case

APD SEMICONDUCTOR reserves the right to make changes without further notice to any products herein. APD SEMICONDUCTOR makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does APD SEMICONDUCTOR assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in APD SEMICONDUCTOR data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. APD SEMICONDUCTOR does not convey any license under its patent rights nor the rights of others. APD SEMICONDUCTOR products are not designed, intended, or authorized for use as represent intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the APD SEMICONDUCTOR product could create a situation where personal injury or death may occur. Should Buyer purchase or use APD SEMICONDUCTOR products for any such unintended or unauthorized application, Buyer shall indemnify and hold APD SEMICONDUCTOR and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attomey fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that APD SEMICONDUCTOR was negligent regarding the design or manufacture of the part.

▲APD Semiconductor, Inc.

2372-C Qume Drive, San Jose, CA 95131, USA Ph: 408 324 0918 FAX: 408 955 0604 Homepage: www.apdsemi.com email: info@apdsemi.com