
Rev. 4223B–CAN–12/03

CAN
Microcontrollers

T89C51CC02
UART
Bootloader
Features
• Protocol

– UART used as Physical Layer
– Based on the Intel Hex-type records
– Autobaud

• In-System Programming
– Read/Write Flash and EEPROM Memories
– Read Device ID
– Full-chip Erase
– Read/Write Configuration Bytes
– Security Setting From ISP Command
– Remote Application Start Command

• In-Application Programming/Self Programming
– Read/Write Flash and EEPROM Memories
– Read Device ID
– Block Erase
– Read/write Configuration Bytes
– Bootloader Start

Description
This document describes the UART bootloader functionalities as well as the serial
protocol to efficiently perform operations on the on-chip memory. Additional informa-
tion on the T89C51CC02 product can be found in the T89C51CC02 datasheet and the
T89C51CC02 errata sheet available on the Atmel web site, www.atmel.com.

The bootloader software Package (source code and binary) currently used for produc-
tion is available from the Atmel web site.

Bootloader Revision Purpose of Modifications Date

Revisions 1.2.0 First release 03/12/2002
1

Functional
Description

The T89C51CC02 Bootloader facilitates In-System Programming and In-Application
Programming.

In-System Programming
Capability

In-System Programming (ISP) allows the user to program or reprogram a microcontrol-
ler’s on-chip Flash memory without removing it from the system and without the need of
a pre-programmed application.

The UART bootloader can manage a communication with a host through the serial net-
work. It can also access and perform requested operations on the on-chip Flash
memory.

In-Application
Programming or Self
Programming Capability

In-Application Programming (IAP) allows the reprogramming of a microcontroller’s on-
chip Flash memory without removing it from the system and while the embedded appli-
cation is running.

The UART bootloader contains some Application Programming Interface routines
named API routines allowing IAP by using the user’s firmware.

Block Diagram This section describes the different parts of the bootloader. The figure below shows the
on-chip bootloader and IAP processes.

Figure 1. Bootloader Process Description

ISP Communication
Management

User

Application
UART Protocol
Communication

Management

Flash
Memory

External host via the

Flash Memory

IAP

Management
User Call

On chip
2
4223B–CAN–12/03

ISP Communication
Management

The purpose of this process is to manage the communication and its protocol between
the on-chip bootloader and an external device (host). The on-chip bootloader imple-
ments a Serial protocol (see Section “Protocol”, page 9). This process translates serial
communication frames (UART) into Flash memory accesses (read, write, erase...).

User Call Management Several Application Program Interface (API) calls are available to the application pro-
gram to selectively erase and program Flash pages. All calls are made through a
common interface (API calls) included in the bootloader. The purpose of this process is
to translate the application request into internal Flash Memory operations.

Flash Memory Management This process manages low level accesses to the Flash memory (performs read and
write accesses).

Bootloader Configuration

Configuration and
Manufacturer Information

The table below lists Configuration and Manufacturer byte information used by the boot-
loader. This information can be accessed through a set of API or ISP commands.

Mnemonic Description Default Value

BSB Boot Status Byte FFh

SBV Software Boot Vector FCh

P1_CF Port 1 Configuration FEh

P3_CF Port 3 Configuration FFh

P4_CF Port 4 Configuration FFh

SSB Software Security Byte FFh

EB Extra Byte FFh

Manufacturer 58h

Id1: Family code D7h

Id2: Product Name BBh

Id3: Product Revision FFh
3
4223B–CAN–12/03

Mapping and Default Value of
Hardware Security Byte

The 4 Most Significant Byte (MSB) of the Hardware Byte can be read/written by soft-
ware (this area is called Fuse bits). The 4 (Least Significant Byte) LSB can only be read
by software and written by hardware in parallel mode (with parallel programmer
devices).

Note: U: Unprogram = 1
P: Program = 0

Security The bootloader has Software Security Byte (SSB) to protect itself from user access or
ISP access.

The Software Security Byte (SSB) protects from ISP accesses. The command "Program
Software Security Bit" can only write a higher priority level. There are three levels of
security:

• level 0: NO_SECURITY (FFh)
This is the default level.
From level 0, one can write level 1 or level 2.

• level 1: WRITE_SECURITY (FEh)
In this level it is impossible to write in the Flash memory, BSB and SBV.
The Bootloader returns an error message.
From level 1, one can write only level 2.

• level 2: RD_WR_SECURITY (FCh)
Level 2 forbids all read and write accesses to/from the Flash memory.
The Bootloader returns an error message.

Only a full chip erase command can reset the software security bits.

Bit Position Mnemonic Default Value Description

7 X2B U To start in x1 mode

6 BLJB P
To map the boot area in code area between F800h-
FFFFh

5 reserved U

4 reserved U

3 reserved U

2 LB2 P

To lock the chip (see data sheet)1 LB1 U

0 LB0 U

Level 0 Level 1 Level 2

Flash/EEPROM Any access allowed Read only access allowed All access not allowed

Fuse bit Any access allowed Read only access allowed All access not allowed

BSB & SBV & EB Any access allowed Read only access allowed All access not allowed

SSB Any access allowed Write level2 allowed Read only access allowed

Manufacturer info Read only access allowed Read only access allowed Read only access allowed

Bootloader info Read only access allowed Read only access allowed Read only access allowed

Erase block Allowed Not allowed Not allowed

Full chip erase Allowed Allowed Allowed

Blank Check Allowed Allowed Allowed
4
4223B–CAN–12/03

Software Boot Vector The Software Boot Vector (SBV) forces the execution of a user bootloader starting at
address [SBV]00h in the application area (FM0).

The way to start this user bootloader is described in the section “Boot Process”.

Figure 2. Software Boot Vector

FLIP Software Program FLIP is a PC software program running under Windows® 9x/2K/XP Windows NT® and
LINUX® that supports all Atmel Flash microcontroller and CAN protocol communication
media.

This software program is available free of charge from the Atmel web site.

UART Bootloader

Application
User Bootloader

[SBV]00h
FM1

FM0
5
4223B–CAN–12/03

In-System
Programming

The ISP allows the user to program or reprogram a microcontroller’s on-chip Flash
memory through the serial line without removing it from the system and without the need
of a pre-programmed application.

This section describes how to start the UART bootloader and all higher level protocol
over the serial line.

Boot Process The bootloader can be activated in two ways:

• Hardware condition

• Regular boot process

Hardware Condition The Hardware Condition forces the bootloader execution from reset.

The default factory Hardware Condition is assigned to port P1.

• P1 must be equal to FEh

In order to offer the best flexibility, the user can define its own Hardware Condition on
one of this following Port:

• Port1

• Port3

• Port4 (only bit0 and bit1)

The Hardware Condition configuration are stored in three bytes called P1_CF, P3_CF,
P4_CF.

These bytes can be modified by the user through a set of API or through an ISP
command.

There is a priority between P1_CF, P3_CF and P4_CF (see boot process diagram).
Note: The BLJB must ba at 0 (programmed) to be able to restart the bootloader.

If the BLJB is equal to 1 (unprogrammed) only the hardware parallel programmer can
change this bit (see T89C51CC02 Datasheet for more detail).
6
4223B–CAN–12/03

Regular Boot Process

RESET

BLJB = 1

P1_CF = FFh

P3_CF = FFh

P4_CF = FFh

P1_CF = P1

P3_CF = P3

P4_CF = P4

Start Bootloader

BSB = 0

SBV < 3Fh

Start User BootloaderStart Application

Yes

No

No

No

No

Yes

Yes

Yes
Yes

Yes

Yes

No

No

No

Yes

Yes

No

No

H
ar

dw
ar

e
B

oo
t P

ro
ce

ss
S

of
tw

ar
e

B
oo

t P
ro

ce
ss

Bit ENBOOT in AUXR1 Register is
Initialized with BLJB Inverted

ENBOOT = 1
PC = F800h

ENBOOT = 0
PC = 0000h
7
4223B–CAN–12/03

Physical Layer The UART used to transmit information has the following configuration:

• Character: 8-bit data

• Parity: none

• Stop: 2 bit

• Flow control: none

• Baud rate: autobaud is performed by the bootloader to compute the baud rate
chosen by the host.

Frame Description The Serial Protocol is based on the Intel Hex-type records.

Intel Hex records consist of ASCII characters used to represent hexadecimal values and
are summarized below.

Table 1. Intel Hex Type Frame

• Record Mark:

– Record Mark is the start of frame. This field must contain ’:’.

• Record length:

– Record length specifies the number of Bytes of information or data which
follows the Record Type field of the record.

• Load Offset:

– Load Offset specifies the 16-bit starting load offset of the data Bytes,
therefore this field is used only for

– Data Program Record.

• Record Type:

– Record Type specifies the command type. This field is used to interpret the
remaining information within the frame.

• Data/Info:

– Data/Info is a variable length field. It consists of zero or more Bytes encoded
as pairs of hexadecimal digits. The meaning of data depends on the Record
Type.

• Checksum:

– The two’s complement of the 8-bit Bytes that result from converting each pair
of ASCII hexadecimal digits to one Byte of binary, and including the Record
Length field to and including the last Byte of the Data/Info field. Therefore,
the sum of all the ASCII pairs in a record after converting to binary, from the
Record Length field to and including the Checksum field, is zero.

Record Mark ‘:’ Record length Load Offset Record Type Data or Info Checksum

1 byte 1 byte 2 bytes 1 bytes n byte 1 byte
8
4223B–CAN–12/03

Protocol

Overview An initialization step must be performed after each Reset. After microcontroller reset,
the boo tloader wa its fo r an au tobaud sequence (see Sect ion “Au tobaud
Performances”).

When the communication is initialized the protocol depends on the record type issued
by the host.

Communication Initialization The host initiates the communication by sending a ’U’ character to help the bootloader
to compute the baudrate (autobaud).

Figure 3. Initialization

Autobaud Performances The bootloader supports a wide range of baud rates. It is also adaptable to a wide range
of oscillator frequencies. This is accomplished by measuring the bit-time of a single bit in
a received character. This information is then used to program the baud rate in terms of
timer counts based on the oscillator frequency. Table 2 shows the autobaud capabilities.

Host Bootloader

"U"
Performs Autobaud

Init Communication

If (not received "U")
"U"

 Communication Opened
Else

Sends Back ‘U’ Character

Table 2. Autobaud Performances

Frequency
(MHz)

Baudrate
(kHz) 1.8432 2 2.4576 3 3.6864 4 5 6 7.3728

2400 OK OK OK OK OK OK OK OK OK

4800 OK - OK OK OK OK OK OK OK

9600 OK - OK OK OK OK OK OK OK

19200 OK - OK OK OK - - OK OK

38400 - - OK OK - OK OK OK

57600 - - - - OK - - - OK

115200 - - - - - - - - OK

Frequency
(MHz)

Baudrate
(kHz) 8 10 11.0592 12 14.746 16 20 24 26.6

2400 OK OK OK OK OK OK OK OK OK

4800 OK OK OK OK OK OK OK OK OK

9600 OK OK OK OK OK OK OK OK OK

19200 OK OK OK OK OK OK OK OK OK
9
4223B–CAN–12/03

Command Data Stream Protocol

All commands are sent using the same flow. Each frame sent by the host is echoed by
the bootloader.

Figure 4. Command Flow

38400 - - OK OK OK OK OK OK OK

57600 - - OK - OK OK OK OK OK

115200 - - OK - OK - - - -

Frequency
(MHz)

Baudrate
(kHz) 8 10 11.0592 12 14.746 16 20 24 26.6

Bootloader

":"Sends first character of the
Frame

If (not received ":")

Sends frame (made of 2 ASCII Gets frame, and sends back echo
for each received Byte

Host

Else":"
 Sends echo and start
 reception

characters per Byte)
Echo analysis
10
4223B–CAN–12/03

Programming the Flash or
EEPROM Data

The flow described below shows how to program data in the Flash memory or in the
EEPROM data memory.

The bootloader programs on a page of 128 bytes basis when it is possible.

The host must take care that:

• The data to program transmitted within a frame are in the same page.

Requests from Host

Answers from Bootloader The boot loader answers with:

• ‘.’ & ‘CR’ & ’LF’ when the data are programmed

• ‘X’ & ‘CR’ & ‘LF’ if the checksum is wrong

• ‘P’ & ‘CR’ & ‘LF’ if the Security is set

Flow Description

Example

Command Name
 Record

type
 Load
Offset

Record

length Data[0] ... Data[127]

Program Flash 00h
start

address
nb of Data x ... x

Program EEPROM
Data

07h
start

address
nb of Data x ... x

Host Bootloader

Write Command

’X’ & CR & LF

NO_SECURITY

Wait Write Command

Checksum Error

Wait Programming

Send Security error

Send COMMAND_OK

Send Write Command

Wait Checksum Error

Wait COMMAND_OK

Wait Security Error

OR

COMMAND ABORTED

COMMAND FINISHED

Send Checksum error

COMMAND ABORTED

’P’ & CR & LFOR

’.’ & CR & LF

HOST : 01 0010 00 55 9A

BOOTLOADER : 01 0010 00 55 9A . CR LF

Programming Data (write 55h at address 0010h in the Flash)
11
4223B–CAN–12/03

Read the Flash or EEPROM
Data

The flow described below allows the user to read data in the Flash memory or in the
EEPROM data memory. A blank check command is possible with this flow.

The device splits into blocks of 16 bytes the data to transfer to the Host if the number of
data to display is greater than 16 data bytes.

Requests from Host

Note: The field “Load offset” is not used.

Answers from Bootloader The boot loader answers to a read Flash or EEPROM Data memory command:

• ‘Address = data ‘ & ‘CR’ & ’LF’
up to 16 data by line.

• ‘X’ & ‘CR’ & ‘LF’ if the checksum is wrong

• ‘L’ & ‘CR’ & ‘LF’ if the Security is set

The bootloader answers to blank check command:

• ‘.’ & ‘CR’ & ’LF’ when the blank check is ok

• ‘First Address wrong’ ‘CR’ & ‘LF’ when the blank check is fail

• ‘X’ & ‘CR’ & ‘LF’ if the checksum is wrong

• ‘P’ & ‘CR’ & ‘LF’ if the Security is set

Flow Description: Blank Check
Command

Command Name
 Record

Type Load Offset

Record

Length Data[0] Data[1] Data[2] Data[3] Data[4]

Read Flash

04h x 05h start address end Address

00h

Blank check on Flash 01h

Read EEPROM Data 02h

Host Bootloader

Blank Check Command

’X’ & CR & LF

 Flash Blank

Wait Blank Check Command

Send First Address

Send COMMAND_OK

Send Blank Check Command

Wait Checksum Error

Wait Address Not
Erased

Wait COMMAND_OK

OR

COMMAND ABORTED

COMMAND FINISHED

Send Checksum error

COMMAND FINISHED

’.’ & CR & LFOR

Address & CR & LF
 Not Erased

Checksum Error
12
4223B–CAN–12/03

Example

Flow Description: Read
Command

Note: The maximum size of block is 400h. To read more than 400h Bytes, the Host must send a new command.

HOST : 05 0000 04 0000 7FFF 01 78

BOOTLOADER : 05 0000 04 0000 7FFF 01 78 . CR LF

Blank Check ok

BOOTLOADER : 05 0000 04 0000 7FFF 01 70 X CR LF CR LF

Blank Check with checksum error
HOST : 05 0000 04 0000 7FFF 01 70

BOOTLOADER : 05 0000 04 0000 7FFF 01 78 xxxx CR LF

Blank Check ko at address xxxx
HOST : 05 0000 04 0000 7FFF 01 78

Host Bootloader

Display Command

’X’ & CR & LF

RD_WR_SECURITY

Wait Display Command

Read Data

Send Security Error

Send Display Data

Send Display Command

Wait Checksum Error

Wait Display Data

Wait Security Error

OR

COMMAND ABORTED

COMMAND FINISHED

Send Checksum Error

COMMAND ABORTED

’L’ & CR & LFOR

"Address = "

All data read

Complete Frame

"Reading value"
CR & LF

All data readAll data read

COMMAND FINISHED

Checksum error
13
4223B–CAN–12/03

Example

Program Configuration
Information

The flow described below allows the user to program Configuration Information regard-
ing the bootloader functionality.

The Boot Process Configuration:

– BSB

– SBV

– P1_CF, P3_CF, P4_CF

– Fuse bits (BLJB and X2 bits) (see Section “Mapping and Default Value of
Hardware Security Byte”)

– SSB

– EB

Requests from Host

Note: 1. The field “Load Offset” is not used

2. To program the BLJB and X2 bit the “bit value” is 00h or 01h.

Answers from Bootloader The bootloader answers with:

• ‘.’ & ‘CR’ & ’LF’ when the value is programmed

• ‘X’ & ‘CR’ & ‘LF’ if the checksum is wrong

• ‘P’ & ‘CR’ & ‘LF’ if the Security is set

HOST : 05 0000 04 0000 0020 00 D7

BOOTLOADER : 05 0000 04 0000 0020 00 D7

BOOTLOADER 0000=-----data------ CR LF (16 data)

BOOTLOADER 0010=-----data------ CR LF (16 data)

BOOTLOADER 0020=data CR LF (1 data)

Display data from address 0000h to 0020h

Command Name
 Record

Type
 Load
Offset

Record

Length Data[0] Data[1] Data[2]

Erase SBV & BSB

03h x

02h 04h 00h -

Program SSB level1
02h 05h

00h -

Program SSB level2 01h -

Program BSB

03h 06h

00h

value

Program SBV 01h

Program P1_CF 02h

Program P3_CF 03h

Program P4_CF 04h

Program EB 06h

Program bit BLJB
03h 0Ah

04h
bit value

Program bit X2 08h
14
4223B–CAN–12/03

Flow Description

Example

Host Bootloader

Write Command

’X’ & CR & LF

NO_SECURITY

Wait Write Command

Checksum Error

Wait Programming

Send Security Error

Send COMMAND_OK

Send Write Command

Wait Checksum Error

Wait COMMAND_OK

Wait Security Error

OR

COMMAND ABORTED

COMMAND FINISHED

Send Checksum Error

COMMAND ABORTED

’P’ & CR & LFOR

’.’ & CR & LF

HOST : 02 0000 03 05 01 F5

BOOTLOADER : 02 0000 03 05 01 F5. CR LF

Programming Atmel function (write SSB to level 2)

HOST : 03 0000 03 06 00 55 9F

BOOTLOADER : 03 0000 03 06 00 55 9F . CR LF

Writing Frame (write BSB to 55h)
15
4223B–CAN–12/03

Read Configuration
Information or Manufacturer
Information

The flow described below allows the user to read the configuration or manufacturer
information.

Requests from Host

Note: The field “Load Offset” is not used

Answers from Bootloader The bootloader answers with:

• ‘value’ & ‘.’ & ‘CR’ & ’LF’ when the value is programmed

• ‘X’ & ‘CR’ & ‘LF’ if the checksum is wrong

• ‘P’ & ‘CR’ & ‘LF’ if the Security is set

Command Name
 Record

Type
 Load
Offset

Record

Length Data[0] Data[1]

Read Manufacturer Code

05h x 02h

00h

00h

Read Family Code 01h

Read Product Name 02h

Read Product Revision 03h

Read SSB

07h

00h

Read BSB 01h

Read SBV 02h

Read P1_CF 03h

Read P3_CF 04h

Read P4_CF 05h

Read EB 06h

Read HSB (Fuse bit) 0Bh 00h

Read Device ID1
0Eh

00h

Read Device ID2 01h

Read Bootloader version 0Fh 00h
16
4223B–CAN–12/03

Flow Description

Example

Host Bootloader

Read Command

’X’ & CR & LF

RD_WR_SECURITY

Wait Read Command

Read Value

Send Security error

Send Data Read

Send Read Command

Wait Checksum Error

Wait Value of Data

Wait Security Error

OR

COMMAND ABORTED

COMMAND FINISHED

Send Checksum error

COMMAND ABORTED

’L’ & CR & LFOR

’value’ & ’.’ & CR & LF

Checksum error

HOST : 02 0000 05 07 02 F0

BOOTLOADER : 02 0000 05 07 02 F0 Value . CR LF

HOST : 02 0000 01 02 00 FB

BOOTLOADER : 02 0000 01 02 00 FB Value . CR LF

Read function (read SBV)

Atmel Read function (read Bootloader version)
17
4223B–CAN–12/03

Erase the Flash The flow described below allows the user to erase the Flash memory.

Two modes of Flash erasing are possible:

• Full Chip erase

• Block erase

The Full Chip erase command erases the whole Flash (16K bytes) and sets some Con-
figuration Bytes at their default values:

• BSB = FFh

• SBV = FCh

• SSB = FFh (NO_SECURITY)

The full chip erase is always executed whatever the Software Security Byte value is.

Note: Take care that the full chip erase execution takes few seconds (128 pages)

The Block erase command erases only a part of the Flash.

Three Blocks are defined in the T89C51CC02:

• block0 (From 0000h to 1FFFh)

• block1 (From 2000h to 3FFFh)

Requests from Host

Answers from Bootloader As the Program Configuration Information flows, the erase block command has three
possible answers:

• ‘.’ & ‘CR’ & ’LF’ when the data are programmed

• ‘X’ & ‘CR’ & ‘LF’ if the checksum is wrong

• ‘P’ & ‘CR’ & ‘LF’ if the Security is set

Command Name
 Record

Type
 Load
Offset

Record

Length Data[0] Data[1]

Erase block0 (0k to 8k)

03h x
02h 01h

00h

Erase block1 (8k to 16k) 20h

Full chip erase 01h 07h -
18
4223B–CAN–12/03

Flow Description

Example

Host Bootloader

Erase Command

’X’ & CR & LF

NO_SECURITY

Wait Erase Command

Checksum Error

Wait Erasing

Send Security Error

Send COMMAND_OK

Send Erase Command

Wait Checksum Error

Wait COMMAND_OK

Wait Security Error

OR

COMMAND ABORTED

COMMAND FINISHED

Send Checksum Error

COMMAND ABORTED

’P’ & CR & LFOR

’.’ & CR & LF

HOST : 01 0000 03 07 F5

BOOTLOADER : 01 0000 03 07 F5 . CR LF

Full Chip Erase

HOST : 02 0000 03 01 20 DA

BOOTLOADER : 02 0000 03 01 20 DA . CR LF

Erase Block1(8k to 16k)
19
4223B–CAN–12/03

Start the Application The flow described below allows to start the application directly from the bootloader
upon a specific command reception.

Two options are possible:

• Start the application with a reset pulse generation (using watchdog).
When the device receives this command the watchdog is enabled and the
bootloader enters a waiting loop until the watchdog resets the device.
Take care that if an external reset chip is used the reset pulse in output may be
wrong and in this case the reset sequence is not correctly executed.

• Start the application without reset
A jump at the address 0000h is used to start the application without reset.

Requests from Host

Answer from Bootloader No answer is returned by the device.

Example

Command Name Record type Load Offset
Record
Length Data[0] Data[1] Data[2] Data[3]

Start application with a reset pulse
generation

03h x

02h

03h

00h - -

Start application with a jump at
“address”

04h 01h Address

HOST : 02 0000 03 03 00 F8

BOOTLOADER : 02 0000 03 03 00 F8

Start Application with reset pulse

HOST : 04 0000 03 03 01 00 00 F5

BOOTLOADER : 04 0000 03 03 01 00 00 F5

Start Application without reset at address 0000h
20
4223B–CAN–12/03

In-Application
Programming/Self-
programming

The IAP allows to reprogram a microcontroller’s on-chip Flash memory without remov-
ing it from the system and while the embedded application is running.

The user application can call some Application Programming Interface (API) routines
allowing IAP. These API are executed by the bootloader.

To call the corresponding API, the user must use a set of Flash_api routines which can
be linked with the application.

Example of Flash_api routines are available on the Atmel web site on the software appli-
cation note:

C Flash Drivers for the T89C51CC02UA

The Flash_api routines on the package work only with the UART bootloader.

The Flash_api routines are listed in APPENDIX-2.

API Call

Process The application selects an API by setting R1, ACC, DPTR0 and DPTR1 registers.

All calls are made through a common interface “USER_CALL” at the address FFF0h.

The jump at the USER_CALL must be done by LCALL instruction to be able to come-
back in the application.

Before jump at the USER_CALL, the bit ENBOOT in AUXR1 register must be set.

Constraints The interrupts are not disabled by the bootloader.

Interrupts must be disabled by user prior to jump to the USER_CALL, then re-enabled
when returning.

Interrupts must also be disabled before accessing EEPROM Data then re-enabled after.

The user must take care of hardware watchdog before launching a Flash operation.

For more information regarding the Flash writing time see the T89C51CC02 data sheet.
21
4223B–CAN–12/03

API Commands Several types of APIs are available:

• Read/Program Flash and EEPROM Data memory

• Read Configuration and Manufacturer Information

• Program Configuration Information

• Erase Flash

• Start bootloader

Read/Program Flash and
EEPROM Data Memory

All routines to access EEPROM Data are managed directly from the application without
using bootloader resources.

To read the Flash memory the bootloader is not involved.

For more details on these routines see the T89C51CC02 Data sheet sections “Pro-
gram/Code Memory” and “EEPROM Data Memory”

Two routines are available to program the Flash:

– __api_wr_code_byte

– __api_wr_code_page

• The application program load the column latches of the Flash then call the
__api_wr_code_byte or __api_wr_code_page see data sheet in section
“Program/Code Memory”.

• Parameter settings

• Instruction: LCALL FFF0h.

Note: No special resources are used by the bootloader during this operation

Read Configuration and
Manufacturer Information

• Parameter settings

API_name R1 DPTR0 DPTR1 Acc

__api_wr_code_byte 02h

Address in
Flash

memory to
write

- Value to write

__api_wr_code_page 09h

Address of
the first Byte
to program in

the Flash
memory

Address in
XRAM of the
first data to

program

Number of Byte
to program

API_name R1 DPTR0 DPTR1 Acc

__api_rd_HSB 0Bh 0000h x return HSB

__api_rd_BSB 07h 0001h x return BSB

__api_rd_SBV 07h 0002h x return SBV

__api_rd_SSB 07h 0000h x return SSB

__api_rd_EB 07h 0006h x return EB

__api_rd_manufacturer 00h 0000h x
return

manufacturer id

__api_rd_device_id1 00h 0001h x return id1
22
4223B–CAN–12/03

• Instruction: LCALL FFF0h.

• At the complete API execution by the bootloader, the value to read is in the
api_value variable.

Note: No special resources are used by the bootloader during this operation

Program Configuration
Information

• Parameter settings

• Instruction: LCALL FFF0h.

Note: 1. See in the T89C51CC02 data sheet the time that a write operation takes.

2. No special resources are used by the bootloader during these operations

__api_rd_device_id2 00h 0002h x return id2

__api_rd_device_id3 00h 0003h x return id3

__api_rd_bootloader_version 0Fh 0000h x return value

API_name R1 DPTR0 DPTR1 Acc

API Name R1 DPTR0 DPTR1 Acc

__api_set_X2 0Ah 0008h x 00h

__api_clr_X2 0Ah 0008h x 01h

__api_set_BLJB 0Ah 0004h x 00h

__api_clr_BLJB 0Ah 0004h x 01h

__api_wr_BSB 06h 0000h x value to write

__api_wr_SBV 06h 0001h x value to write

__api_wr_EB 06h 0006h x value to write

__api_wr_SSB_LEVEL0 05h FFh x x

__api_wr_SSB_LEVEL1 05h FEh x x

__api_wr_SSB_LEVEL2 05h FCh x x
23
4223B–CAN–12/03

Erase Flash The T89C51CC02 flash memory is divided in several blocks:

Block 0: from address 0000h to 1FFFh

Block 1: from address 2000h to 3FFFh

These two blocks contain 64 pages.

• Parameter settings

• Instruction: LCALL FFF0h.

Note: 1. See the T89C51CC02 data sheet for the time that a write operation takes and this
time must multiply by the number of pages.

2. No special resources are used by the bootloader during these operations

Start Bootloader This routine allows to start at the beginning of the bootloader as after a reset. After call-
ing this routine the regular boot process is performed and the communication must be
opened before any action.

• No special parameter setting

• Set bit ENBOOT in AUXR1 register

• instruction: LJUMP or LCALL at address F800h

API Name R1 Dptr0 Dptr1 Acc

__api_erase_block0
01h

0000h x x

__api_erase_block1 2000h x x
24
4223B–CAN–12/03

Appendix-A
Table 3. Summary of frames from Host

Command
 Record

Type

Record

Length Offset Data[0] Data[1] Data[2] Data[3] Data[4]

Program Nb Data Byte in Flash. 00h
nb of data

(up to 80h)
start

address
x x x x x

Erase block0 (0000h-1FFFh)

03h

02h x 01h
00h - - -

Erase block1 (2000h-3FFFh) 20h - - -

Start application with a reset pulse
generation

02h x

03h

00h - - -

Start application with a jump at
“address”

04h x 01h address -

Erase SBV & BSB

02h

x 04h 00h - - -

Program SSB level 1 x
05h

00h - - -

Program SSB level 2 x 01h - - -

Program BSB

03h

x

06h

00h value - -

Program SBV x 01h value - -

Program P1_CF x 02h value - -

Program P3_CF x 03h value - -

Program P4_CF x 04h value - -

Program EB x 06h value - -

Full Chip Erase 01h x 07h - - - -

Program bit BLJB
03h

x
0Ah

04h bit value - -

Program bit X2 x 08h bit value - -

Read Flash

04h 05h x Start Address End Address

00h

Blank Check 01h

Read EEPROM Data 02h
25
4223B–CAN–12/03

Read Manufacturer Code

05h 02h x

00h

00h - - -

Read Family Code 01h - - -

Read Product Name 02h - - -

Read Product Revision 03h - - -

Read SSB

07h

00h - - -

Read BSB 01h - - -

Read SBV 02h - - -

Read P1_CF 03h - - -

Read P3_CF 04h - - -

Read P4_CF 05h - - -

Read EB 06h - - -

Read Hardware Byte 0Bh 00h - - -

Read Device Boot ID1
0Eh

00h - - -

Read Device Boot ID2 01h - - -

Read Bootloader Version 0Fh 00h - - -

Program Nb Data byte in EEPROM 00h
nb of data

(up to 80h)
start

address
x x x x x

Table 3. Summary of frames from Host (Continued)

Command
 Record

Type

Record

Length Offset Data[0] Data[1] Data[2] Data[3] Data[4]
26
4223B–CAN–12/03

Appendix-B
Table 4. API Summary

Function Name
Bootloader
Execution R1 DPTR0 DPTR1 Acc

__api_rd_code_byte no

__api_wr_code_byte yes 02h
Address in

Flash memory
to write

- Value to write

__api_wr_code_page yes 09h

Address of the
first Byte to

program in the
Flash memory

Address in
XRAM of the
first data to

program

Number of Byte to
program

__api_erase_block0 yes 01h 0000h x x

__api_erase_block1 yes 01h 2000h x x

__api_rd_HSB yes 0Bh 0000h x return value

__api_set_X2 yes 0Ah 0008h x 00h

__api_clr_X2 yes 0Ah 0008h x 01h

__api_set_BLJB yes 0Ah 0004h x 00h

__api_clr_BLJB yes 0Ah 0004h x 01h

__api_rd_BSB yes 07h 0001h x return value

__api_wr_BSB yes 06h 0000h x value

__api_rd_SBV yes 07h 0002h x return value

__api_wr_SBV yes 06h 0001h x value

__api_erase_SBV yes 06h 0001h x FCh

__api_rd_SSB yes 07h 0000h x return value

__api_wr_SSB_level0 yes 05h 00FFh x x

__api_wr_SSB_level1 yes 05h 00FEh x x

__api_wr_SSB_level2 yes 05h 00FCh x x

__api_rd_EB yes 07h 0006h x return value

__api_wr_EB yes 06h 0006h x value

__api_rd_manufacturer yes 00h 0000h x return value

__api_rd_device_id1 yes 00h 0001h x return value

__api_rd_device_id2 yes 00h 0002h x return value

__api_rd_device_id3 yes 00h 0003h x return value

__api_rd_bootloader_version yes 0Fh 0000h x return value

__api_eeprom_busy no

__api_rd_eeprom_byte no

__api_wr_eeprom_byte no

__api_start_bootloader no
27
4223B–CAN–12/03

Table of Contents

Features ... 1

Description .. 1

Functional Description ... 2
In-System Programming Capability ..2
In-Application Programming or Self Programming Capability2
Block Diagram ..2
Bootloader Configuration ..3
Security ...4
Software Boot Vector ..5
FLIP Software Program ..5

In-System Programming .. 6
Boot Process ..6
Physical Layer ..8
Protocol ...9

In-Application Programming/Self-programming 21
API Call ...21
API Commands ...22

Appendix-A .. 25

Appendix-B .. 27
i
4208A–CAN–11/02

© Atmel Corporation 2003. All rights reserved. Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its
subsidiaries. Other terms and product names may be the trademarks of others.

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibil ity for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature
 Printed on recycled paper.

4208A–CAN–11/02 /xM

