N-CHANNEL SILICON POWER LDMOS FET FOR 2 W + 10 W VHF to L-BAND SINGLE-END POWER AMPLIFIER

DESCRIPTION

The NE55410GR is an N-channel enhancement-mode LDMOS FET designed for driver 0.1 to 2.6 GHz PA, such as, cellular base station amplifier, analog/digital TV-transmitters, and the other PA's. This product has two different FET's on one die manufactured using our NEWMOS technology (our WSi gate lateral MOS FET), and its nitride surface passivation and quadruple layer aluminum silicon metalization offer a high degree of reliability.

FEATURES

- Two different FET's (Q1: Pout = $2 \mathrm{~W}, \mathrm{Q} 2:$ Pout $=10 \mathrm{~W}$) in one package
- Over 25 dB gain available by connecting two FET's in series

$$
\begin{aligned}
& : \mathrm{GL}_{\mathrm{(}(\mathrm{Q} 1)}=13.5 \mathrm{~dB} \text { TYP. }(\mathrm{VDS}=28 \mathrm{~V}, \operatorname{IDset}(\mathrm{Q} 1)=20 \mathrm{~mA}, \mathrm{f}=2140 \mathrm{MHz}) \\
& : \mathrm{GL}_{(\mathrm{Q} 2)}=11.0 \mathrm{~dB} \text { TYP. }(\mathrm{VDS}=28 \mathrm{~V}, \operatorname{IDset}(\mathrm{Q} 2)=100 \mathrm{~mA}, \mathrm{f}=2140 \mathrm{MHz})
\end{aligned}
$$

- High 1 dB compression output power : $\mathrm{Po}_{(1 \mathrm{~dB})(\mathrm{Q} 1)}=35.4 \mathrm{dBm}$ TYP. $(\mathrm{Vds}=28 \mathrm{~V}$, $\operatorname{ldset}(\mathrm{Q} 1)=20 \mathrm{~mA}, \mathrm{f}=2140 \mathrm{MHz})$

$$
: \mathrm{Po}_{(1 \mathrm{~dB})(\mathrm{Q} 2)}=40.4 \mathrm{dBm} \text { TYP. }(\mathrm{VDs}=28 \mathrm{~V}, \operatorname{IDset}(\mathrm{Q} 2)=100 \mathrm{~mA}, \mathrm{f}=2140 \mathrm{MHz})
$$

- High drain efficiency
$: \eta_{\mathrm{d}}\left(Q_{1}\right)=52 \%$ TYP. $\left(\mathrm{VDs}=28 \mathrm{~V}\right.$, IDset $\left.\left(Q_{1}\right)=20 \mathrm{~mA}, \mathrm{f}=2140 \mathrm{MHz}\right)$
$: \eta_{\mathrm{d}}^{(\mathrm{Q} 2)}=46 \%$ TYP. $(\mathrm{VDS}=28 \mathrm{~V}$, IDset (Q2) $=100 \mathrm{~mA}, \mathrm{f}=2140 \mathrm{MHz})$
- Low intermodulation distortion
$: \mathrm{IM}_{3}(\mathrm{Q} 1)=-40 \mathrm{dBc}$ TYP. $(\mathrm{V}$ Ds $=28 \mathrm{~V}$, IDset $(\mathrm{Q} 1+\mathrm{Q} 2)=120 \mathrm{~mA}$, $\mathrm{f}=2$ 132.5/2 147.5 MHz, Pout $=33 \mathrm{dBm}$ (2 tones))
- Single Supply (VDS : $3 \mathrm{~V}<\mathrm{V}_{\mathrm{DS}} \leq 32 \mathrm{~V}$)
- Excellent Thermal Stability
- Surface mount type and Super low cost plastic package : 16-pin plastic HTSSOP
- Integrated ESD protection
- Excellent stability against HCl (Hot Carrier Injection)

APPLICATION

- Digital cellular base station PA: W-CDMA/GSM/D-AMPS/N-CDMA/PCS etc.
- UHF-band TV transmitter PA

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
NE55410GR	NE55410GR-T3-AZ	16-pin plastic HTSSOP (Pb-Free) ${ }^{\text {Note }}$	55410	• Embossed tape 12 mm wide - Pin 1 and 8 indicates pull-out direction of tape - Qty $1 \mathrm{kpcs} /$ reel

Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact your nearby sales office.

Remark To order evaluation samples, contact your nearby sales office.
Part number for sample order: NE55410GR
PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name	Pin No.	Pin Name
1	Source	9	Source
2	Drain (Q2)	10	Gate (Q1)
3	Drain (Q2)	11	Source
4	Drain (Q2)	12	Drain (Q1)
5	Drain (Q2)	13	Source
6	Source	14	Gate (Q2)
7	Gate (Q1)	15	Gate (Q2)
8	Source	16	Source

Remark All the terminals of a Q2 connected to a circuit. Backside : Source (S)

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Test Conditions	Ratings	Unit
Drain to Source Voltage	Vds		65	V
Gate to Source Voltage	VGs		± 7	V
Drain Current (Q1)	ld (Q1)		0.25	A
Drain Current (Q2)	ld (Q2)		1.0	A
Total Device Dissipation ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$)	$\mathrm{P}_{\text {tot }}$		40	W
Input Power (Q1)	Pin (Q1)	$\mathrm{f}=2.14 \mathrm{GHz}, \mathrm{V}_{\mathrm{Ds}}=28 \mathrm{~V}$	0.3	W
Input Power (Q2)	$\mathrm{Pin}(\mathrm{Q} 2)$	$\mathrm{f}=2.14 \mathrm{GHz}, \mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$	1.5	W
Channel Temperature	Tch		150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE $\left(\mathrm{TA}_{\mathrm{A}}=\mathbf{+ 2 5}^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Channel to Case Resistance	Rth (ch-c)		-	2.5	3.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

RECOMMENDED OPERATING CONDITIONS ($\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	V Ds	-	28	32	V
Gate to Source Voltage	VGs	2.7	3.3	3.7	V
Input Power (Q1), CW	Pin (Q1)	-	15	23	dBm
Input Power (Q2), CW	Pin (Q2)	-	20	30	dBm
Average Output Power (Q1), CW ${ }^{\text {Note }}$	Po (ave.) (Q1)	-	-	24	dBm
Average Output Power (Q2), CW ${ }^{\text {Note }}$	Po (ave.) (Q2)	-	-	30	dBm

Note When mounting on the PWB that our company recommends.
ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{+ 2 5}^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Q1						
Gate to Source Leak Current	IGss (Q1)	VGss $=5 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
Drain to Source Leakage Current	Idss (Q1)	Voss $=65 \mathrm{~V}$	-	-	1	mA
Gate Threshold Voltage	V th (Q1)	$V_{D S}=10 \mathrm{~V}, \mathrm{lds}=1 \mathrm{~mA}$	2.2	2.8	3.4	V
Transconductance	gm (Q1)	$V_{D S}=28 \mathrm{~V}$, $\mathrm{lds}=20 \mathrm{~mA}$	-	0.09	-	S
Drain to Source Breakdown Voltage	BVoss (Q1)	loss $=10 \mu \mathrm{~A}$	65	75	-	V
Q2						
Gate to Source Leak Current	IGss (Q2)	V Gss $=5 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
Drain to Source Leakage Current	IDSS (Q2)	V dss $=65 \mathrm{~V}$	-	-	1	mA
Gate Threshold Voltage	$\mathrm{V}_{\text {th (Q2) }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{lds}=1 \mathrm{~mA}$	2.0	2.6	3.2	V
Transconductance	gm (Q2)	$\mathrm{V} \mathrm{Ds}=28 \mathrm{~V}$, $\mathrm{lds}=100 \mathrm{~mA}$	-	0.45	-	S
Drain to Source Breakdown Voltage	BVoss (Q2)	loss $=10 \mu \mathrm{~A}$	65	75	-	V

RF CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Q1						
Gain 1 dB Compression Output Power	$\mathrm{Po}(1 \mathrm{~dB})$	$\begin{aligned} & \mathrm{f}=2140 \mathrm{MHz}, \mathrm{~V} \mathrm{DS}=28 \mathrm{~V}, \\ & \text { IDset }=20 \mathrm{~mA} \end{aligned}$	-	35.4	-	dBm
Drain Efficiency	η_{d}		-	52	-	\%
Linear Gain	GL ${ }^{\text {Note1 }}$		12	13.5	-	dB
Q2						
Gain 1 dB Compression Output Power	$\mathrm{Po}(1 \mathrm{~dB})$	$\begin{aligned} & \mathrm{f}=2140 \mathrm{MHz}, \mathrm{~V} \text { Ds }=28 \mathrm{~V}, \\ & \text { Ioset }=100 \mathrm{~mA} \end{aligned}$	-	40.4	-	dBm
Drain Efficiency	$\eta \mathrm{d}$		-	46	-	\%
Linear Gain	GL ${ }^{\text {Note2 }}$		9.5	11	-	dB
Gain 1 dB Compression Output Power	$\mathrm{Po}(1 \mathrm{~dB})$	$\begin{aligned} & f=1840 \mathrm{MHz}, \mathrm{~V}_{\mathrm{Ds}}=28 \mathrm{~V}, \\ & \text { IDset }=100 \mathrm{~mA} \end{aligned}$	-	40.5	-	dBm
Drain Efficiency	η_{d}		-	49	-	\%
Linear Gain	GL ${ }^{\text {Note2 }}$		-	14	-	dB
Q1 + Q2						
Gain 1 dB Compression Output Power	Po (1 dB)	$\begin{aligned} & \mathrm{f}=880 \mathrm{MHz}, \mathrm{VDS}=28 \mathrm{~V}, \\ & \text { lDset }=120 \mathrm{~mA}(\mathrm{Q} 1+\mathrm{Q} 2) \end{aligned}$	-	41.5	-	dBm
Drain Efficiency	η_{d}		-	55	-	\%
Linear Gain	GL ${ }^{\text {Note3 }}$		-	30	-	dB
Gain 1 dB Compression Output Power	$\mathrm{Po}_{(1 \mathrm{~dB})}$	$\begin{aligned} & \mathrm{f}=2140 \mathrm{MHz}, \mathrm{~V} \mathrm{Ds}=28 \mathrm{~V}, \\ & \text { loset }=120 \mathrm{~mA}(\mathrm{Q} 1+\mathrm{Q} 2) \end{aligned}$	-	40.0	-	dBm
Drain Efficiency	$\eta{ }^{\text {d }}$		34	42	-	\%
Output Power	Pout		39	40	-	dB
Linear Gain	$G L^{\text {Note4 }}$		24	25	-	dB
3rd Order Intermodulation Distortion	IM_{3}	$\mathrm{f}=2132.5 / 2147.5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{DS}}=28 \mathrm{~V} \text {, }$ 2 carrier W-CDMA 3GPP, Test Model1, 64DPCH, 67\% Clipping,$\begin{aligned} & \text { loset }=120 \mathrm{~mA}(\mathrm{Q} 1+\mathrm{Q} 2), \\ & \text { Ave } \mathrm{P}_{\text {out }}=33 \mathrm{dBm} \end{aligned}$	-	-40	-	dBc
Drain Efficiency	$\eta_{\text {d }}$		-	21	-	\%

Notes 1. $\mathrm{P}_{\mathrm{in}}=15 \mathrm{dBm}$
2. $P_{\text {in }}=20 \mathrm{dBm}$
3. $\mathrm{P}_{\text {in }}=5 \mathrm{dBm}$
4. $P_{\text {in }}=10 \mathrm{dBm}$

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=\mathbf{+ 2 5}^{\circ} \mathrm{C}\right.$, V DS $=\mathbf{2 8} \mathrm{V}$, IDset $=120 \mathrm{~mA}$, unless otherwise specified)

GAIN, DRAIN EFFICIENCY, vs. OUTPUT POWER

W-CDMA 3GPP, Test Model 1, 64 DPCH, 67\% Clipping, Center Frequency 2.14GHz, 15 MHz spacing

Remark The graphs indicate nominal characteristics.

S-PARAMETERS

S-parameters/Noise parameters are provided on our web site in a form (S2P) that enables direct import to a microwave circuit simulator without keyboard input.

Click here to download S-parameters.
[RF and Microwave] \rightarrow [Device Parameters]
URL http://www.ncsd.necel.com/microwave/index.html

EVALUATION CIRCUIT ($\mathrm{f}=\mathbf{8 4 0}$ to $\mathbf{9 6 0} \mathbf{~ M H z}$, VDs = $\mathbf{2 8} \mathrm{V}$, IDset $=\mathbf{1 2 0} \mathbf{m A}$)

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

EVALUATION CIRCUIT (f = 2090 to $\mathbf{2 1 9 0 ~ M H z , ~ V d s = 2 8 ~ V , ~ I D s e t ~ = ~} \mathbf{1 2 0 ~ m A) ~}$

Symbol	Width (mm)	Length (mm)
TL1	1.0	17.0
TL2	1.0	4.0
TL3	1.0	24.5
TL4	1.0	2.5
TL5	1.0	3.0
TL6	0.5	2.5
TL7	0.5	4.5
TL8	1.0	25.5
TL9	1.0	2.5
TL10	4.5	4.5
TL11	1.0	3.5

Symbol	Width (mm)	Length (mm)
TL12	1.0	4.0
TL13	1.0	4.5
TL14	1.0	25.0
TL15	2.5	2.5
TL16	1.0	27.0
TL17	1.0	2.0
TL18	5.0	4.0
TL19	5.0	2.0
TL20	1.0	12.5
TL21	1.0	5.5

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

<R>

EVALUATION CIRCUIT (f = 2090 to $2190 \mathrm{MHz}, V_{\mathrm{ds}}=28 \mathrm{~V}$, $\mathrm{IDset}^{2}=120 \mathrm{~mA}$)

PACKAGE DIMENSIONS

16-PIN PLASTIC HTSSOP (UNIT: mm)

Remark (): Reference value

LAND PATTERN (UNIT: mm)

Remarks1. Via holes: 158 holes
2. Hole size : $\phi 0.15 \mathrm{~mm}$
3. Min. spacing : 0.354 mm
4. \square : Solder resist or etching

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of $220^{\circ} \mathrm{C}$ or higher Preheating time at 120 to $180^{\circ} \mathrm{C}$ Maximum number of reflow processes Maximum chlorine content of rosin flux (\% mass)	: $260^{\circ} \mathrm{C}$ or below : 10 seconds or less : 60 seconds or less : 120 ± 30 seconds : 3 times : 0.2\%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (\% mass)	: $260^{\circ} \mathrm{C}$ or below : 10 seconds or less : $120^{\circ} \mathrm{C}$ or below : 1 time : 0.2\%(Wt.) or below	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (\% mass)	: $350^{\circ} \mathrm{C}$ or below : 3 seconds or less : 0.2\%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

- The information in this document is current as of January, 2007. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb -free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb -free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices	
Lead (Pb)	<1000 PPM	-A	-AZ
Mercury	<1000 PPM	Not Detected	(*)
Cadmium	<100 PPM	Not Detected	
Hexavalent Chromium	<1000 PPM	Not Detected	
PBB	<1000 PPM	Not Detected	
PBDE	<1000 PPM	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.
See CEL Terms and Conditions for additional clarification of warranties and liability.

