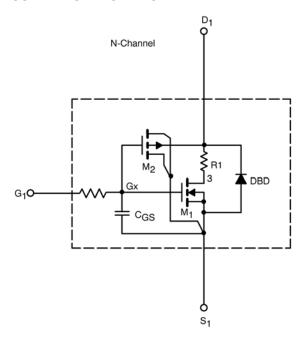


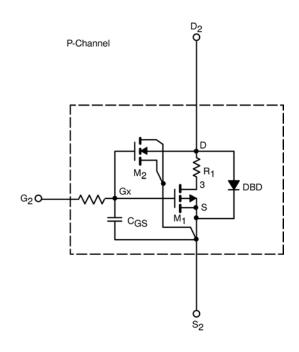
SPICE Device Model Si4569DY Vishay Siliconix

N- and P-Channel 40-V (D-S) MOSFET

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n- and p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

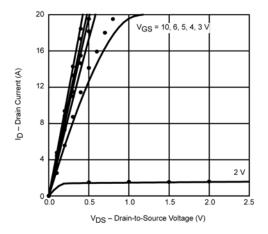
SUBCIRCUIT MODEL SCHEMATIC

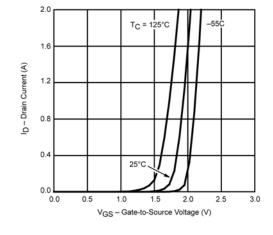
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

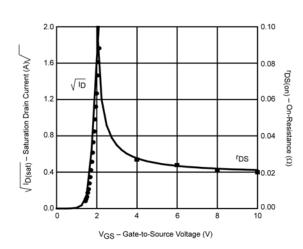
SPICE Device Model Si4569DY

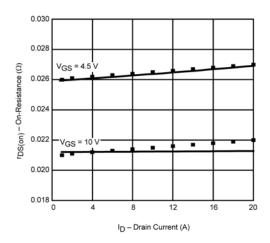
Vishay Siliconix

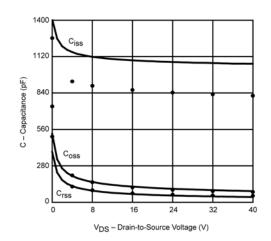
SPECIFICATIONS (T _J = 25°C	TIVELOG OTI	TERVIOL NOTED)		T	1	
Parameter	Symbol	Test Condition		Simulated Data	Measured Data	Unit
Static	<u> </u>			-		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	N-Ch	1.2		V
		$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	P-Ch	1.8		
On-State Drain Current ^a	I _{D(on)}	V_{DS} = 5 V, V_{GS} = 10 V	N-Ch	224		Α
		V_{DS} = -5 V, V_{GS} = -10 V	P-Ch	205		
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 6 \text{ A}$	N-Ch	0.021	0.022	Ω
		$V_{GS} = -10 \text{ V}, I_D = -6 \text{ A}$	P-Ch	0.023	0.026	
		V _{GS} = 4.5 V, I _D = 4.8 A	N-Ch	0.026	0.024	
		V_{GS} = -4.5 V, I_D = -4.9 A	P-Ch	0.031	0.031	
Forward Transconductance ^a	g _{fs} –	V _{DS} = 15 V, I _D = 6 A	N-Ch	17	20	S
		$V_{DS} = -15 \text{ V}, I_{D} = -6 \text{ A}$	P-Ch	37	17	
Diode Forward Voltage ^a	V _{SD}	I _S = 1.5 A	N-Ch	0.80	0.73	V
		$I_{\rm S} = -1.6 \; {\rm A}$	P-Ch	0.80	-0.73	
Dynamic ^b				•		
Total Gate Charge	Q _g	V _{DS} = 20 V, V _{GS} = 10 V, I _D = 5 A	N-Ch	17	21	nC
		V_{DS} = -20 V, V_{GS} = -10 V, I_D = -5 A	P-Ch	34	41	
		N-Channel $V_{DS} = 20 \text{ V, } V_{GS} = 4.5 \text{ V, } I_D = 5 \text{ A}$ P-Channel $V_{DS} = -20 \text{ V, } V_{GS} = -4.5 \text{ V, } I_D = -5 \text{ A}$	N-Ch	8.8	9.6	
			P-Ch	20	21	
Gate-Source Charge	Q_{gs}		N-Ch	2.3	2.3	
			P-Ch	4.5	4.5	
Gate-Source Charge	Q_{gs}		N-Ch	3.2	3.2	
			P-Ch	9.2	9.2	

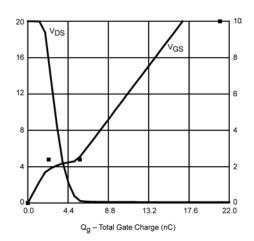

a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$ b. Guaranteed by design, not subject to production testing.

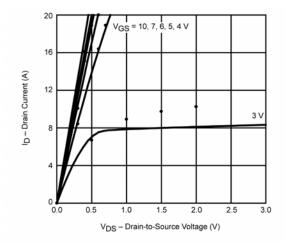


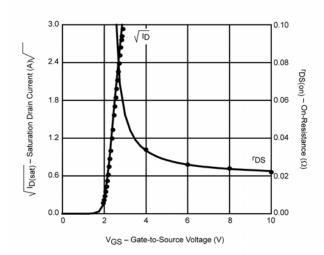

SPICE Device Model Si4569DY Vishay Siliconix

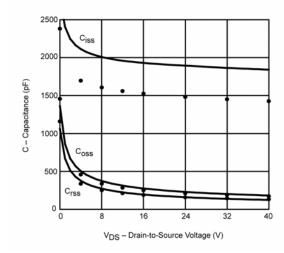

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)


N-Channel MOSFET

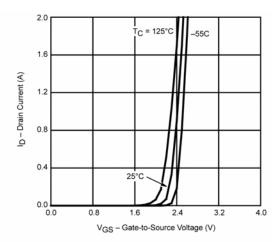


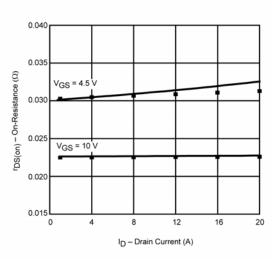


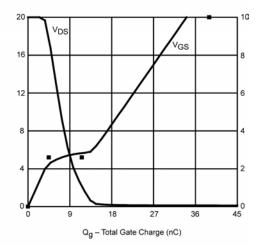

Note: Dots and squares represent measured data.


SPICE Device Model Si4569DY

Vishay Siliconix


P-Channel MOSFET





Note: Dots and squares represent measured data.