
Abstract

General Description The MAX9517/MAX9524 are low-power video amplifiers with integrated reconstruction filters. Specially suited for standard-definition video signals, such as composite and luma, these devices are ideal for a wide range of applications such as cell phones and security/CCTV cameras. Video signals should be DC-coupled into the MAX9517 input and AC-coupled into the MAX9524 input. The MAX9517/MAX9524 have two single-pole, singlethrow (SPST) analog switches that can be used to route stereo audio, video, or digital signals. The reconstruction filter typically has $\pm 1 \mathrm{~dB}$ passband flatness at 9 MHz and 52 dB attenuation at 27 MHz . The amplifiers have a gain of $2 \mathrm{~V} / \mathrm{V}$, and the outputs can be DC-coupled to a load of 75Ω, which is equivalent to two video loads. The outputs can be AC-coupled to a load of 150Ω, which is equivalent to one video load. The MAX9517/MAX9524 operate from a 2.7 V to 3.6 V single supply and are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range. The MAX9517/ MAX9524 are available in a small 12-pin TQFN (3mm x 3mm) package.

Integrated Reconstruction Filter for Standard-
Definition Video
9MHz, $\pm 1 \mathrm{~dB}$ Passband
52dB Attenuation at 27MHz
Dual SPST Switches
Fixed Gain of 2V/V
2.7V to 3.6V Single-Supply Operation
Security/CCTV Cameras
Mobile Phones/Cell Phones
Digital Still Cameras (DSC)
Camcorders (DVC)
Portable Media Players (PMP)

Ordering Information

PART	INPUT			
	TYPE	PIN-PACKAGE	PKG	TOP
MAX9517ATC+	DC BIAS	12 TQFN-EP*	CODE	T1233+4
MAX9524ATC+	AC CLAMP	12 TQFN-EP*	T1233+4	ABF

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead-free package.
*EP $=$ Exposed pad.
Pin Configuration appears at end of data sheet.
Functional Diagrams

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$ to GND.. . -0.3 V to +4 V
VIDIN to GND ..-0.3V to +4 V
COM_, NO_ to GND \qquad -0.3 V to (VDD $+0.3 \mathrm{~V})$
SHDN, IN_ to GND \qquad $\mathrm{O} . \mathrm{Continuous}$ to +4 V Continuous Input Current
VIDIN, IN_, SHDN \qquad

COM_, NO

Peak Current
COM_, NO_ (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) $\pm 200 \mathrm{~mA}$ Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 12-Pin TQFN (derate $14.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1177 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature $+150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering 10s).
.$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=\overline{S H D N}=3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\right.$, no load, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	VDD	Guaranteed by PSRR	2.7		3.6	V
Supply Current	IDD	MAX9517		3.5	7	mA
		MAX9524		4.25	8	
Shutdown Supply Current	ISHDN	$V_{\text {SHDN }}=$ GND			1	$\mu \mathrm{A}$

VIDEO

DC BUFFER INPUTS (MAX9517)

Input Voltage Range	VIN	Guaranteed by outputvoltage swing	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	0		1.05	V
			$V_{D D}=3 \mathrm{~V}$	0		1.2	
Input Current	In	VIN $=0 \mathrm{~V}$			3.5	10	$\mu \mathrm{A}$
Input Resistance	RIN			300			k Ω
DC Voltage Gain	Av	$R_{L}=150 \Omega$ to $G N D$	$\begin{aligned} & V_{D D}=2.7 \mathrm{~V}, \\ & 0 \leq V_{I N} \leq 1.05 \mathrm{~V} \end{aligned}$	1.95	2.00	2.04	V/V
			$\begin{aligned} & V_{D D}=3 V \\ & 0 \leq V_{I N} \leq 1.2 \mathrm{~V} \end{aligned}$	1.95	2.00	2.04	
Output Level		Measured at $\mathrm{V}_{\text {OUT, }}$ VIDIN $=0.1 \mu \mathrm{~F}$ to GND, RL $=150 \Omega$ to GND		200	300	410	mV
Output-Voltage Swing		Measured at output, $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$,$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 1.05 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to }-0.2 \mathrm{~V}$		2.1			$V_{\text {P-P }}$
		$\begin{aligned} & \text { Measured at output, } \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \\ & 0 \leq \mathrm{V}_{\mathrm{IN}} \leq 1.05 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } \mathrm{V}_{\mathrm{DD} / 2} \\ & \hline \end{aligned}$		2.1			
		$\begin{aligned} & \text { Measured at output, } V_{D D}=3 \mathrm{~V}, \\ & 0 \leq V_{I N} \leq 1.2 \mathrm{~V}, R_{L}=150 \Omega \text { to }-0.2 \mathrm{~V} \end{aligned}$		2.4			
		$\begin{aligned} & \text { Measured at output, } V_{D D}=3 V, \\ & 0 \leq V_{I N} \leq 1.2 \mathrm{~V}, R_{L}=150 \Omega \text { to } V_{D D / 2} \end{aligned}$		2.4			
		Measured at output, $\mathrm{V} D=3.135 \mathrm{~V}$,$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 1.05 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega \text { to }-0.2 \mathrm{~V}$		2.1			
SYNC-TIP CLAMP INPUT (MAX9524)							
Sync-Tip Clamp Level	VCLP	Sync-tip clamp		0.23		0.39	V
Input Voltage Range		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V				1.05	$V_{\text {P-P }}$
		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ to 3.6 V				1.2	
Sync Crush		Sync-tip clamp, percen sync pulse (0.3VP-P), gu clamping current measu	ntage reduction in uaranteed by input urement			2	\%

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=\overline{\operatorname{SHDN}}=3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\right.$, no load, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Input Clamping Current		Sync-tip clamp				1	2	$\mu \mathrm{A}$
Maximum Input Source Resistance						300		Ω
DC Voltage Gain (Note 2)	Av	$R \mathrm{~L}=150 \Omega$ to GND	$\begin{aligned} & V_{D D}=2.7 \mathrm{~V}, \\ & 0 \leq V_{I N} \leq 1.05 \mathrm{~V} \end{aligned}$		1.95	2.00	2.04	V/V
			$\begin{aligned} & V_{D D}=3 V \\ & 0 \leq V_{I N} \leq 1.2 V \end{aligned}$		1.95	2.00	2.04	
Output Level		Measured at $\mathrm{V}_{\text {OUT, }}$ VIDIN $=0.1 \mu \mathrm{~F}$ to GND, $R_{L}=150 \Omega$ to GND			0.21	0.30	0.39	V
Output-Voltage Swing		Measured at output, $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=$ $V_{C L P}$ to ($V_{C L P}+1.05 \mathrm{~V}$), $\mathrm{R}_{\mathrm{L}}=150 \Omega$ to -0.2 V				2.1		V_{P-P}
		Measured at output, $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=$ $V_{C L P}$ to ($V_{C L P}+1.05 \mathrm{~V}$), $R_{L}=150 \Omega$ to $V_{D D} / 2$				2.1		
		Measured at output, $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CLP}}$ to (VCLP +1.2V), RL = 150Ω to -0.2 V				2.4		
		$\begin{aligned} & \text { Measured at output, } V_{D D}=3 \mathrm{~V}, \mathrm{~V}_{I N}=V_{C L P} \\ & \text { to }\left(\mathrm{V}_{C L P}+1.2 \mathrm{~V}\right), R_{L}=150 \Omega \text { to } V_{D D / 2} \end{aligned}$				2.4		
		Measured at output, $\mathrm{V}_{\mathrm{DD}}=3.135 \mathrm{~V}, \mathrm{~V}$ IN $=$ $V_{C L P}$ to (VCLP +1.05 V), $\mathrm{R}_{\mathrm{L}}=75 \Omega$ to -0.2 V				2.1		
Output Short-Circuit Current		Short to GND (sourcing)				140		mA
		Short to V_{CC} (sinking)				70		
Output Resistance	Rout	$\mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V},-10 \mathrm{~mA} \leq \mathrm{I}$ LOAD $\leq+10 \mathrm{~mA}$				0.2		Ω
Output Leakage Current		$\overline{\text { SHDN }}=$ GND					1	$\mu \mathrm{A}$
Power-Supply Rejection Ratio		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$			48			dB
Standard-Definition Reconstruction Filter		$\pm 1 \mathrm{~dB}$ passband flatness				9		MHz
		$\mathrm{V}_{\text {VIDOUT }}=2 \mathrm{~V}_{\text {P-P, }}$ reference frequency is 100 kHz		$\mathrm{f}=5.5 \mathrm{MHz}$		+0.15		dB
				$f=10 \mathrm{MHz}$		-3		
				$f=27 \mathrm{MHz}$		-52		
Differential Gain	DG	5-step modulated staircase of 129 mV step size and 286 mV P-p subcarrier amplitude; $\mathrm{f}=4.43 \mathrm{MHz}$				1		\%
Differential Phase	DP	5-step modulated staircase of 129 mV step size and 286 mV P-p subcarrier amplitude; $f=4.43 \mathrm{MHz}$				0.4		Degrees
2T Pulse-to-Bar K Rating		Bar time is $18 \mu \mathrm{~s}$, the beginning 2.5% and the ending 2.5% of the bar time are ignored, $2 \mathrm{~T}=200 \mathrm{~ns}$				0.6		K\%
2T Pulse Response		$2 \mathrm{~T}=200 \mathrm{~ns}$				0.2		K\%
2T Bar Response		Bar time is $18 \mu \mathrm{~s}$, the beginning 2.5% and the ending 2.5% of the bar time are ignored, $2 \mathrm{~T}=200 \mathrm{~ns}$				0.2		K\%

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

ELECTRICAL CHARACTERISTICS (continued)
$\left(V_{D D}=\overline{S H D N}=3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\right.$, no load, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Nonlinearity		5 -step staircase, $\mathrm{f}=4.43 \mathrm{MHz}$			0.5		\%
Group Delay Distortion		$100 \mathrm{kHz} \leq \mathrm{f} \leq 5.5 \mathrm{MHz}$, outputs are 2 V P-P			12		ns
Peak Signal to RMS Noise		$100 \mathrm{kHz} \leq \mathrm{f} \leq 5.5 \mathrm{MHz}$			71		dB
Power-Supply Rejection Ratio		$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{P}_{-\mathrm{P}}$			29		dB
Output Impedance		$\mathrm{f}=5.5 \mathrm{MHz}$			4.8		Ω
All-Hostile Crosstalk		$\mathrm{f}=4.43 \mathrm{MHz}$			-64		dB
ANALOG SWITCHES							
Analog Signal Range	$V_{C O M}$, V_{NO}			0		VDD	V
On-Resistance (Note 3)	RON	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{ICOM}$	$\mathrm{mA}, \mathrm{V}_{\mathrm{NO}_{-}}=1.5 \mathrm{~V}$		1.7	5.0	Ω
On-Resistance Match Between Channels (Notes 3, 4)	$\triangle \mathrm{RON}$	$V_{\text {DD }}=2.7 \mathrm{~V}, \mathrm{ICOM}$	$\mathrm{mA}, \mathrm{V}_{\text {NO_ }}=1.5 \mathrm{~V}$			0.4	Ω
On-Resistance Flatness (Note 5)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{ICOM}_{-} \\ & 1.5 \mathrm{~V}, 2.0 \mathrm{~V} \end{aligned}$	$0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}_{-}}=1.0 \mathrm{~V},$		0.5	1.5	Ω
NO_ Off-Leakage Current (Note 3)	INO_(OFF)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}} \\ & \mathrm{~V}_{\mathrm{NO}}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \\ & \hline \end{aligned}$	J.3V, 3.3V;	-2		+2	nA
COM_ On-Leakage Current (Note 3)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}} \\ & \mathrm{~V}_{\mathrm{NO}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V}, \end{aligned}$.3V, 3.3V; unconnected	-2.5		+2.5	nA
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}=1.5 \mathrm{~V} ; \mathrm{RL}_{\mathrm{L}}= \\ & \mathrm{V}_{\mathrm{IH}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \end{aligned}$	$\Omega, C_{L}=35 \mathrm{pF},$			100	ns
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1.5 \mathrm{~V} ; \mathrm{RL}_{\mathrm{L}}= \\ & \mathrm{V}_{\mathrm{IH}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \end{aligned}$	$\Omega, C_{L}=35 p F,$			100	ns
Skew (Note 3)	tSKEW	$\mathrm{RS}_{S}=39 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{p}$				2	ns
Charge Injection	Q	$\mathrm{V}_{\mathrm{GEN}}=1.5 \mathrm{~V}$, RGEN	$\Omega, C_{L}=1 \mathrm{nF}$		10		pC
Off-Isolation	VISO	$\begin{aligned} & f=10 \mathrm{MHz} ; \mathrm{V}_{\mathrm{NO}}^{-} \\ & =1 \mathrm{~V}_{P-P} ; R_{L}=50 \Omega, \\ & C_{L}=5 \mathrm{pF} \end{aligned}$			-55		dB
		$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\text {NO_}}=1 \mathrm{VPP}_{-P} ; \mathrm{RL}_{L}=50 \Omega, \mathrm{CL}_{L}=5 \mathrm{pF}$			-80		
On-Channel -3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}, \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$			300		MHz
Total Harmonic Distortion	THD	$\mathrm{V}_{\text {COM }}=2 \mathrm{~V}_{\text {P-P, }}, \mathrm{R}_{\mathrm{L}}=600 \Omega$			0.03		\%
NO_ Off-Capacitance	CNO_(OFF)	$\mathrm{f}=1 \mathrm{MHz}$			20		pF
Switch On-Capacitance	C(ON)	$\mathrm{f}=1 \mathrm{MHz}$			50		pF
Switch-to-Switch	$V_{C T}$	$\begin{aligned} & \mathrm{f}=10 \mathrm{MHz} ; \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$			-80		
		$\begin{aligned} & f=1 \mathrm{MHz} ; \mathrm{V}_{\text {NO_ }}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \end{aligned}$			-110		
NO_-to-VIDOUT		Video circuit is on, switches are open	$\begin{aligned} & \hline f=10 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}=1}=1 \mathrm{~V}_{\mathrm{P}_{-} \mathrm{P}} \\ & \hline \end{aligned}$		-55		dB
			$\begin{aligned} & f=1 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$		-80		

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=\overline{\mathrm{SHDN}}=3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\right.$, no load, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CROSSTALK						
VIDOUT-to-NO_		Video circuit is on, $f=20 \mathrm{kHz}$, VIDOUT $=2 V_{P-P}, R_{L}=50 \Omega, C_{L}=5 p F$		90		dB
VIDIN-to-COM		Video circuit is shutdown, $\mathrm{f}=20 \mathrm{kHz}$, $0.25 V_{P-P}$ at VIDIN, $R_{L}=600 \Omega$		100		dB
VIDOUT-to-COM		Video circuit is on, $f=20 \mathrm{kHz}$, VIDOUT $=2 V_{P-P,}, R_{L}=50 \Omega, C_{L}=5 p F$		90		dB
LOGIC SIGNAL (IN1 AND IN2)						
Logic-Low Threshold	$\mathrm{V}_{\text {IL }}$				0.5	V
Logic-High Threshold	V_{IH}		1.4			V
Logic-Input Current	IIN				10	$\mu \mathrm{A}$
LOGIC SIGNAL ($\overline{\text { SHDN }}$)						
Logic-Low Threshold	VIL				$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
Logic-High Threshold	V_{IH}		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$			V
Logic-Input Current	IIN				10	$\mu \mathrm{A}$

Note 1: All devices are 100\% production tested at $T_{A}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.
Note 2: Voltage gain (Av) is a two-point measurement in which the output-voltage swing is divided by the input-voltage swing.
Note 3: Guaranteed by design.
Note 4: $\Delta R_{O N}=\operatorname{Ron}(M A X)-\operatorname{RON}(M I N)$.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Typical Operating Characteristics

($V_{D D}=\overline{\mathrm{SHDN}}=3.3 \mathrm{~V}$. Video outputs have $\mathrm{R}_{\mathrm{L}}=150 \Omega$ connected to $G N D . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

(VDD $=\overline{\mathrm{SHDN}}=3.3 \mathrm{~V}$. Video outputs have $\mathrm{R} L=150 \Omega$ connected to GND . $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SWITCH INPUT-TO-INPUT CROSSTALK vs. FREQUENCY

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Typical Operating Characteristics (continued)

($V_{D D}=\overline{S H D N}=3.3 \mathrm{~V}$. Video outputs have $\mathrm{R}_{\mathrm{L}}=150 \Omega$ connected to $G N D . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	
1	N.C.	FUNCTION
2	COM1	Analog Switch 1 Common Terminal
3	COM2	Analog Switch 2 Common Terminal
4	VIDOUT	Video Output
5	GND	Ground
6	VIDIN	Video Input
7	NO2	Analog Switch 2 Normally Open Terminal
8	NO1	Analog Switch 1 Normally Open Terminal
9	$\overline{\text { SHDN }}$	Active-Low Shutdown Input. Connect to GND to place device in shutdown.
10	IN1	Analog Switch 1 Digital Control Input
11	IN2	Analog Switch 2 Digital Control Input
12	VDD	Positive Power Supply. Bypass to GND with a 0.14F capacitor.
-	EP	Exposed Paddle. Connect EP to GND. EP is also internally connected to GND.

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Abstract

Detailed Description The MAX9517/MAX9524 consist of a lowpass filter and an output amplifier capable of driving a standard 150Ω video load to ground. The MAX9517 has an input buffer and the MAX9524 has an input sync-tip clamp. The MAX9517/MAX9524 both have two SPST analog switches that can be used to route audio, video, or digital signals. The output amplifiers provide a fixed gain of 2V/V. The MAX9517/MAX9524 filter and amplify the video DAC output. External video signals, in which the DC bias is usually not known, can be AC-coupled to the MAX9524.

Input with DC Buffer (MAX9517)

The input of the MAX9517 can be directly connected to the video source if the signal is approximately between ground and 1 V . This specification is commonly found at the output of most video DACs.
DC-coupling requires that the input signals are ground referenced so that the sync tip of composite or luma signals is within 50 mV of ground.

Abstract

Input with Sync-Tip Clamp (MAX9524) When the bias of the incoming video signal is either unknown or not between ground and 1 V (such as an external video source), use the MAX9524 to connect the video source through a $0.1 \mu \mathrm{~F}$ capacitor. The VIDIN input of the MAX9524 can only handle signals with a sync pulse, such as composite video and luma. An internal sync-tip clamp sets the internal DC level of the video signal.

Video Filter

The filter passband $(\pm 1 \mathrm{~dB})$ is typically 9 MHz to make the device suitable for standard-definition video signals from all sources (including broadcast video and DVD). Broadcast video signals are channel limited: NTSC signals have 4.2 MHz bandwidth, and PAL signals have 5 MHz bandwidth. Video signals from a DVD player, however, are not channel limited; therefore, the bandwidth of DVD video signals can approach the Nyquist limit of 6.75 MHz (recommendation ITU-R BT.601-5 specifies 13.5 MHz as the sampling rate for standarddefinition video). Therefore, the maximum bandwidth of the signal is 6.75 MHz . To ease the filtering requirements, most modern video systems oversample by two times, clocking the video current DAC at 27 MHz .

Outputs

The video output amplifiers can both source and sink load current, allowing output loads to be DC- or ACcoupled. The amplifier output stage needs around 300 mV of headroom from either supply rail. The parts have an internal level shift circuit that positions the sync tip at approximately 300 mV at the output.
If the supply voltage is greater than 3.135 V (5% below a 3.3 V supply), each amplifier can drive two DC-coupled video loads to ground. If the supply is less than 3.135 V , each amplifier can drive only one DC-coupled or AC-coupled video load.

Shutdown
The MAX9517/MAX9524 draw less than $1 \mu \mathrm{~A}$ supply current when SHDN is low. In shutdown, the amplifier output becomes high impedance.

SPST Analog Switches
Table 1. Logic for Analog Switches

$\mathbf{I N}_{\mathbf{-}}$	SWITCH STATE
0	OFF
1	ON

Applications Information
 Reducing Power Consumption in the Video DACs

The MAX9517/MAX9524 have high-impedance input buffers that can work with source resistances as high as 300Ω. To reduce power dissipation in the video DACs, the DAC output resistor can be scaled up in value. The reference resistor that sets the reference current inside the video DACs must also be similarly scaled up. For instance, if the output resistor is 37.5Ω, the DAC must source 26.7 mA when the output is 1 V . If the output resistor is increased to 300Ω, the DAC only needs to source 3.33 mA when the output is 1 V .
There is parasitic capacitance from the DAC output to ground. That capacitance in parallel with the DAC output resistor forms a pole that can potentially roll off the frequency response of the video signal. For example, 300Ω in parallel with 50 pF creates a pole at 10.6 MHz . To minimize this capacitance, reduce the area of the signal trace attached to the DAC output as much as possible, and place the MAX9517/MAX9524 as close as possible to the video DAC outputs.

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

AC-Coupling the Outputs

The outputs can be AC-coupled because the output stage can source and sink current as shown in Figure 1. Coupling capacitors should be $220 \mu \mathrm{~F}$ or greater to keep the highpass filter formed by the 150Ω equivalent resistance of the video transmission line to a corner frequency of 4.8 Hz or below. The frame rate of PAL systems is 25 Hz , and the frame rate of NTSC systems is 30 Hz . The corner frequency should be well below the frame rate.

Abstract

Changing Between Video Output and Microphone Input on a Single Connector A single pole on a mobile phone jack can be used for transmitting a video signal to a television or receiving the signal from the microphone of a headset. Figure 2 shows how the MAX9517 can transmit a video signal. Figure 3 shows how the MAX9517 can receive and pass on the signal from a microphone.

Switching Between Video and Digital Signals

The dual SPST analog switches and the high-impedance output of the video amplifier enable video transmission, digital transmission, and digital reception all on a single pole of a connector. Figures 4, 5, and 6 show the different configurations of the MAX9517.

Selecting Between Two Video Sources

The analog switches can multiplex between two video sources. For example, a mobile phone might have an application processor with an integrated video encoder and a mobile graphics processor with an integrated video encoder, each creating a composite video signal that is between 0 and 1 V . Figure 7 shows this application
in which the MAX9517 chooses between two internal video sources. The two analog switches can be used as a $2: 1$ multiplexer to select which video DAC output is actually filtered, amplified, and then driven out to the connector. Close switch 1 to select the video from the application processor. Close switch 2 to select the video from the mobile graphics processor.
Figure 8 shows the application in which the MAX9524 chooses between two external video sources with unknown DC bias.

Y/C Mixer with Chroma Mute If the video application processor has two current output digital-to-analog converters (DACs) for luma (Y) and chroma (C), respectively, then the signals can be mixed together to create a composite video signal by summing the currents into a single resistor, as shown in Figure 9. The composite video signal should be ACcoupled into the MAX9524 because the composite video signal has a positive DC level shift. The sync-tip clamp of the MAX9524 will re-establish the DC bias level of the signal inside the chip.
The chroma current is connected to essentially a sin-gle-pole, double-throw (SPDT) switch. In one position, the switch routes the chroma current into the resistor. In the other position, the switch routes the chroma current into ground. For the Y/C mixer to work properly, the chroma current must be routed through analog switch 1 into the resistor.
If the chroma signal needs to be muted, then the chroma current is shunted to ground through analog switch 2. Analog switch 1 stays open. See Figure 10.

Figure 1. AC-Coupled Outputs

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Figure 2. Video Output Configuration

Figure 3. Microphone Input Configuration

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Figure 4. Video Output Configuration

Figure 5. Digital Output Configuration

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Figure 6. Digital Input Configuration

Figure 7. Selecting Between Two Internal Video Sources

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Figure 8. Selecting Between Two External Video Sources

Figure 9. Luma and Chroma Mixer Circuit (Chroma Current Routed into Resistor)

Standard-Definition Video Filter Amplifiers with

 Dual SPST Switches

Figure 10. Luma and Chroma Mixer Circuit with Chroma Muted. Chroma Current is Shunted into Ground Through Analog Switch 2.

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Anti-Alias Filter

The MAX9524 can also provide anti-alias filtering with buffer before an analog-to-digital converter (ADC), which would be present in an NTSC/PAL video decoder, for example. Figure 11 shows an example application circuit for MAX9524. An external composite video signal is applied to IN , which is terminated with 75Ω to ground. The signal is AC-coupled to VIDIN because the DC level of an external video signal is usually not well specified.

Power-Supply Bypassing and Ground
The MAX9517/MAX9524 operate from a single-supply voltage down to 2.7 V , allowing for low-power operation. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor. Place all external components as close as possible to the device.

Figure 11. MAX9524 is Used as an Anti-Alias Filter with Buffer (Switches Can Route Other Signals)

Figure 12. Switching Time

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Switch Test Circuits/Timing Diagrams (continued)

Figure 13. Output Signal Skew

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Switch Test Circuits/Timing Diagrams (continued)

Figure 14. Charge Injection

MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT IC TERMINALS
OFF-ISOLATION IS MEASURED BETWEEN COM_AND OFF NO_TERMINAL ON EACH SWITCH. ON-LOSS IS MEASURED BETWEEN COM_AND ON NO_ TERMINAL ON EACH SWITCH. SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

Figure 15. On-Loss, Off-Isolation, and Crosstalk

Figure 16. Channel Off-/On-Capacitance

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Typical Operating Circuits

MAX9517/MAX9524

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Standard-Definition Video Filter Amplifiers with Dual SPST Switches

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

[^0] implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are

