DISCRETE SEMICONDUCTORS

DATA SHEET

BLW77HF/VHF power transistor

Product specification

BLW77

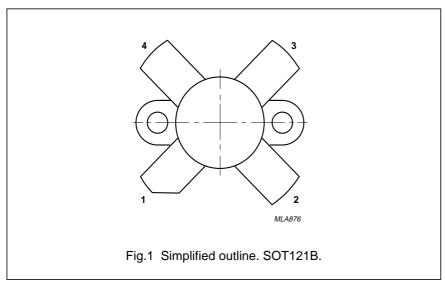
DESCRIPTION

N-P-N silicon planar epitaxial transistor intended for use in class-AB or class-B operated high power transmitters in the h.f. and v.h.f. bands. The transistor presents excellent performance as a linear amplifier in the h.f. band. It is resistance stabilized and is guaranteed to withstand severe load

mismatch conditions. Transistors are delivered in matched here groups.

The transistor has a $\frac{1}{2}$ " flange envelope with a ceramic cap. All leads are isolated from the flange.

QUICK REFERENCE DATA


R.F. performance up to $T_h = 25$ °C

MODE OF OPERATION	V _{CE} V	I _{C(ZS)}	f MHz	P _L W	G _p dB	η %	d ₃ dB
s.s.b. (class-AB)	28	0,1	1,6 – 28	15 – 130 (P.E.P.)	> 12	> 37,5 ⁽¹⁾	< -30
c.w. (class-B)	28	_	87,5	130	typ. 7,5	typ. 75	

Note

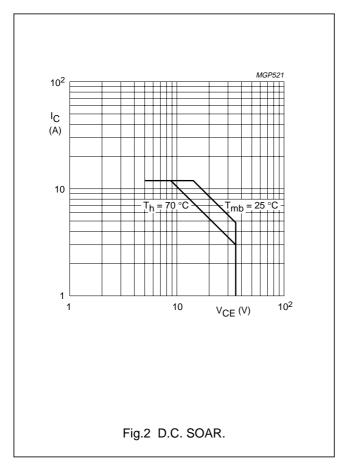
1. At 130 W P.E.P.

PIN CONFIGURATION

PINNING - SOT121B.

PIN	DESCRIPTION
1	collector
2	emitter
3	base
4	emitter

PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.


BLW77

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-emitter voltage $(V_{BE} = 0)$

peak value	V_{CESM}	max.	70	V
Collector-emitter voltage (open base)	V_{CEO}	max.	35	V
Emitter-base voltage (open collector)	V_{EBO}	max.	4	٧
Collector current (average)	$I_{C(AV)}$	max.	12	Α
Collector current (peak value); f > 1 MHz	I _{CM}	max.	30	Α
R.F. power dissipation (f > 1 MHz;); T_{mb} = 25 °C	P_{rf}	max.	245	W
Storage temperature	T_{stg}	-65 to -	+ 150	°С
Operating junction temperature	T_j	max.	200	°C

THERMAL RESISTANCE

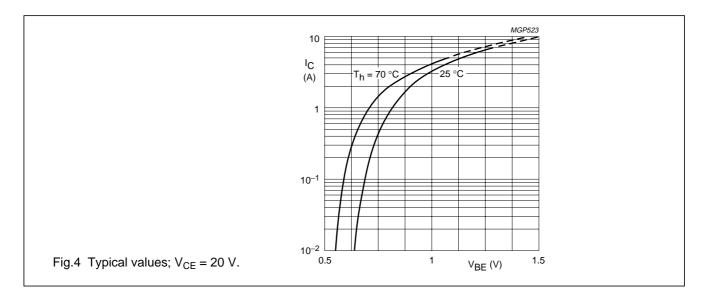
(dissipation = 100 W; T_{mb} = 90 °C, i.e. T_h = 70 °C)

From junction to mounting base (d.c. dissipation)

From junction to mounting base (r.f. dissipation)

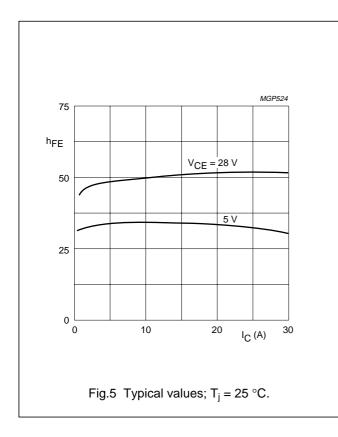
From mounting base to heatsink

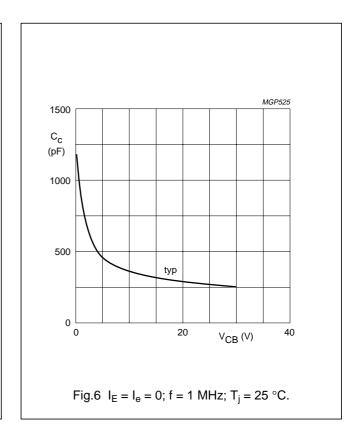
 $R_{th j-mb(dc)} = 1,03 \text{ K/W}$ $R_{th j-mb(rf)} = 0,71 \text{ K/W}$ $R_{th mb-h} = 0,2 \text{ K/W}$

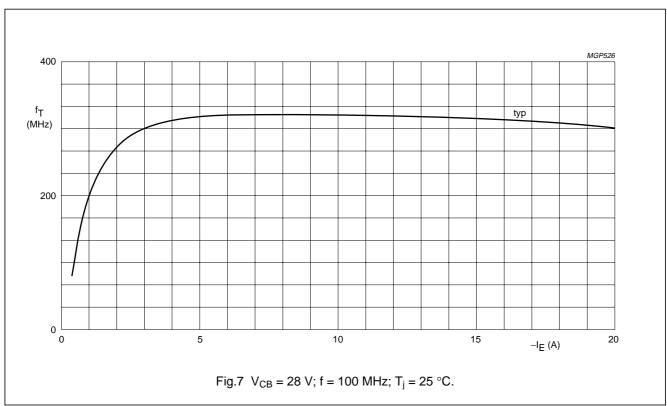

BLW77

CHARACTERISTICS

CHARACTERISTICS				
$T_j = 25$ °C unless otherwise specified				
Collector-emitter breakdown voltage				
$V_{BE} = 0$; $I_{C} = 50 \text{ mA}$	$V_{(BR)CES}$	>	70	V
Collector-emitter breakdown voltage				
open base; I _C = 100 mA	$V_{(BR)CEO}$	>	35	V
Emitter-base breakdown voltage				
open collector; I _E = 20 mA	$V_{(BR)EBO}$	>	4	V
Collector cut-off current				
$V_{BE} = 0; V_{CE} = 35 \text{ V}$	I _{CES}	<	20	mΑ
D.C. current gain ⁽¹⁾				
$I_C = 7 A$; $V_{CE} = 5 V$	h _{FE}	15	to 80	
D.C. current gain ratio of matched devices ⁽¹⁾				
$I_C = 7 A$; $V_{CE} = 5 V$	h _{FE1} /h _{FE2}	<	1,2	
Collector-emitter saturation voltage ⁽¹⁾				
$I_C = 20 \text{ A}; I_B = 4 \text{ A}$	V_{CEsat}	typ.	2	V
Transition frequency at f = 100 MHz ⁽²⁾				
$-I_E = 7 \text{ A}; V_{CB} = 28 \text{ V}$	f⊤	typ.	320	MHz
$-I_E = 20 \text{ A}; V_{CB} = 28 \text{ V}$	f _T	typ.	300	MHz
Collector capacitance at f = 1 MHz				
$I_E = I_e = 0; V_{CB} = 28 \text{ V}$	C_c	typ.	255	pF
Feedback capacitance at f = 1 MHz				
$I_C = 100 \text{ mA}; V_{CE} = 28 \text{ V}$	C_re	typ.	175	pF
Collector-flange capacitance	C_{cf}	typ.	3	pF


Notes

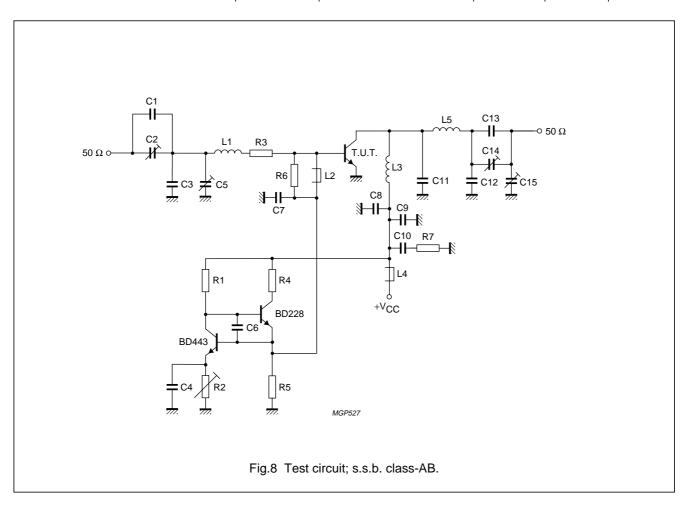

- 1. Measured under pulse conditions: $t_p \leq 300~\mu s;~\delta \leq 0{,}02.$
- 2. Measured under pulse conditions: $t_p \leq 50~\mu s;~\delta \leq 0{,}01.$



HF/VHF power transistor

BLW77

HF/VHF power transistor


BLW77

APPLICATION INFORMATION

R.F. performance in s.s.b. class-AB operation (linear power amplifier)

 V_{CE} = 28 V; T_h = 25 °C; f_1 = 28,000 MHz; f_2 = 28,001 MHz

OUTPUT POWER	G _p	ղ _{dt} (%)	I _C (A)	d ₃	d ₅	I _{C(ZS)}
w	dB	at 130 W P.E.P.		dB	dB	Α
15 to 130 (P.E.P.)	> 12	> 37,5	< 6,2	< -30	< -30	0,1

HF/VHF power transistor

BLW77

List of components:

C1 = 27 pF ceramic capacitor (500 V)

C2 = 100 pF air dielectric trimmer (single insulated rotor type)

C3 = 180 pF polystyrene capacitor

C4 = C6 = C9 = 100 nF polyester capacitor

C5 = 100 pF air dielectric trimmer (single non-insulated rotor type)

C7 = C8 = 3.9 nF ceramic capacitor

C10 = 2,2 μF moulded metallized polyester capacitor

C11 = 2×180 pF polysterene capacitors in parallel

C12 = 3×56 pF and 33 pF ceramic capacitors in parallel (500 V)

C13 = 4×56 pF and 68 pF ceramic capacitors in parallel (500 V)

C14 = 360 pF air dielectric trimmer (single insulated rotor type)

C15 = 360 pF air dielectric trimmer (single non-insulated rotor type)

L1 = 88 nH; 3 turns Cu wire (1,0 mm); int. dia. 9,0 mm; length 6,1 mm; leads $2 \times 7 \text{ mm}$

L2 = L4 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)

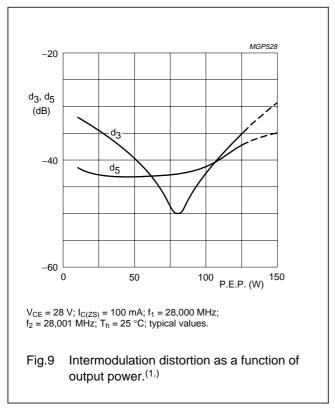
L3 = L5 = 80 nH; 2,5 turns closely wound enamelled Cu wire (1,6 mm); int. dia. 10,0 mm; leads 2×7 mm

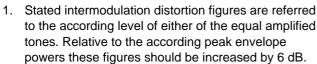
R1 = 470Ω wirewound resistor (5,5 W)

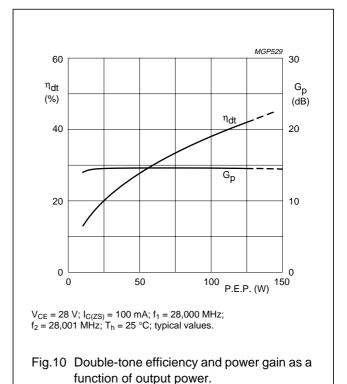
R2 = 4.7Ω wirewound potentiometer (3 W)

R3 = 0.55Ω ; parallel connection of $4 \times 2.2 \Omega$ carbon resistors ($\pm 5\%$; 0.5 W each)

R4 = 45Ω ; parallel connection of $4 \times 180 \Omega$ wirewound resistors (5,5 W each)

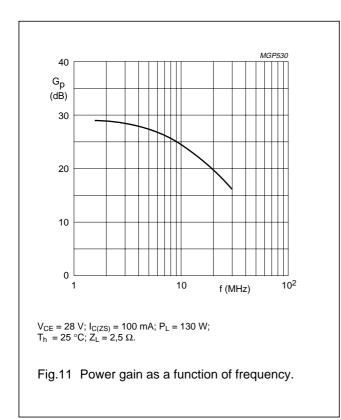

R5 = $56 \Omega (\pm 5\%)$ carbon resistor (0,5 W)

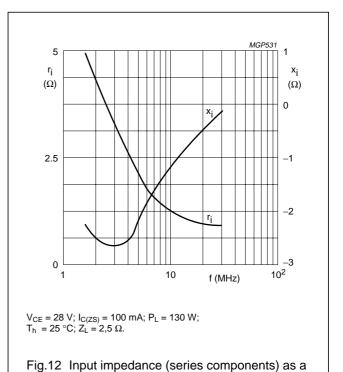

R6 = $27 \Omega (\pm 5\%)$ carbon resistor (0,5 W)


R7 = $4.7 \Omega (\pm 5\%)$ carbon resistor (0,5 W)

HF/VHF power transistor

BLW77

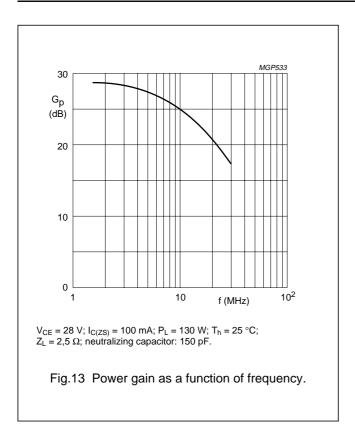


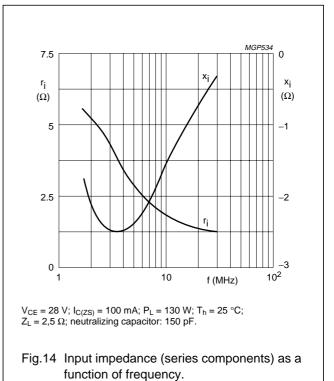


Product specification Philips Semiconductors

HF/VHF power transistor

BLW77

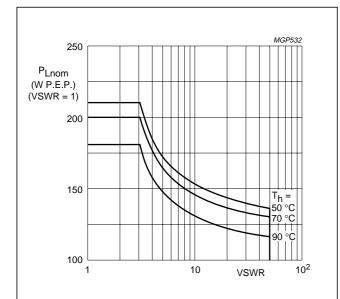

function of frequency.


Figs 11 and 12 are typical curves and hold for an

unneutralized amplifier in s.s.b. class-AB operation.

HF/VHF power transistor

BLW77


13 and 14 are typical curves and hold for a push-pull amplifier with cross-neutralization in s.s.b class-AB operation.

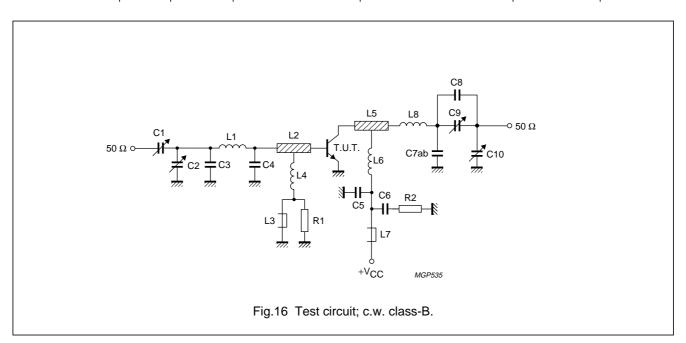
operation.

August 1986

10

BLW77

The graph shows the permissible output power under nominal conditions (VSWR = 1) as a function of the expected VSWR during short-time mismatch conditions with heatsink temperatures as parameter.


 $\begin{array}{ll} \mbox{Fig.15} & \mbox{R.F. SOAR; s.s.b. class-AB operation;} \\ \mbox{f}_1 = 28,000 \mbox{ MHz; f}_2 = 28,001 \mbox{ MHz;} \\ \mbox{V}_{CE} = 28 \mbox{ V; R}_{th \mbox{ mb-h}} = 0,2 \mbox{ K/W}. \end{array}$

HF/VHF power transistor

BLW77

R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit); $T_h = 25$ °C

f (MHz)	V _{CE} (V)	P _L (W)	P _S (W)	G _p (dB)	I _C (A)	η (%)	_ z _i (Ω)	√Y _L (mS)
87,5	28	130	typ. 23,2	typ. 7,5	typ. 6,2	typ. 75	0,62 + j0,73	273 – j42

List of components:

C1 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)

C2 = C9 = C10 = 7 to 100 pF film dielectric trimmer (cat. no. 2222 809 07015)

C3 = C8 = 22 pF ceramic capacitor (500 V)

C4 = 4×82 pF ceramic capacitors in parallel (500 V)

C5 = 390 pF polystyrene capacitor

C6 = 220 nF polyester capacitor

C7a = 2×10 pF ceramic capacitors in parallel (500 V)

C7b = 2×8.2 pF ceramic capacitors in parallel (500 V)

L1 = 25 nH; 2 turns Cu wire (1,6 mm); int. dia. 5,0 mm; length 4,6 mm; leads $2 \times 5 \text{ mm}$

L2 = L5 = 2,4 nH; strip (12 mm \times 6 mm); tap for L4 and L6 at 5 mm from transistor

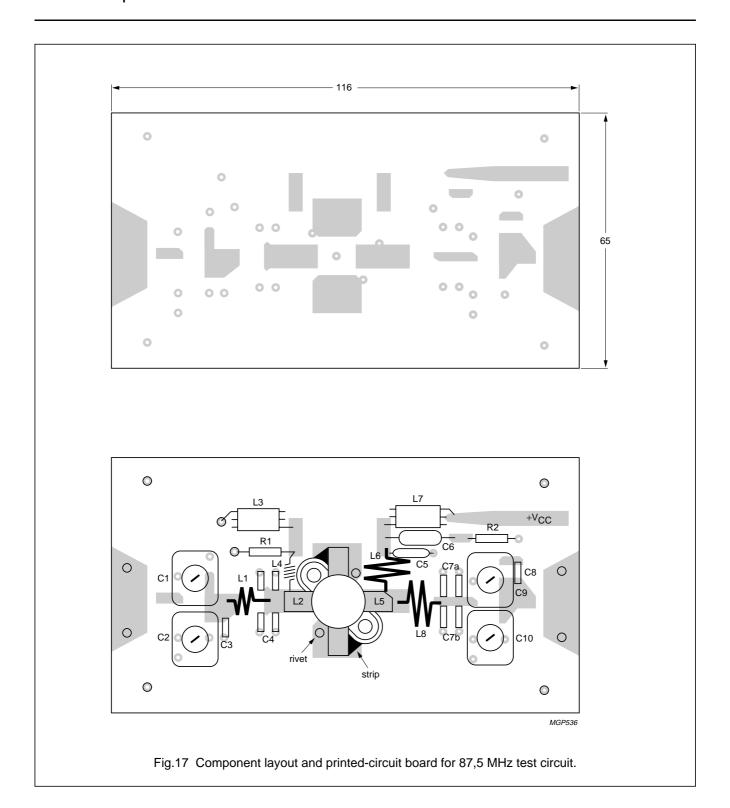
L3 = L7 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)

L4 = 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); int. dia. 3 mm; leads 2×5 mm

L6 = 46 nH; 2 turns Cu wire (2,0 mm); int. dia. 9,0 mm; length 6,0 mm; leads $2 \times 5 \text{ mm}$

L8 = 44 nH; 2 turns Cu wire (2,0 mm); int. dia. 9,0 mm; length 6,7 mm; leads $2 \times 5 \text{ mm}$

L2 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric.

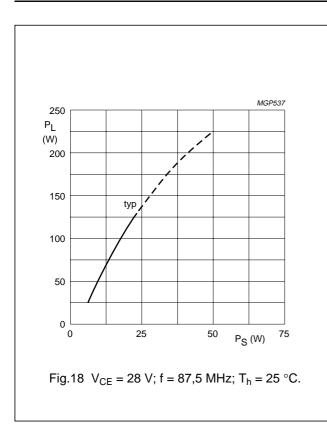

R1 = $10 \Omega (\pm 10\%)$ carbon resistor

R2 = $10 \Omega (\pm 10\%)$ carbon resistor

Component layout and printed-circuit board for 87,5 MHz test circuit are shown in Fig.17.

HF/VHF power transistor

BLW77

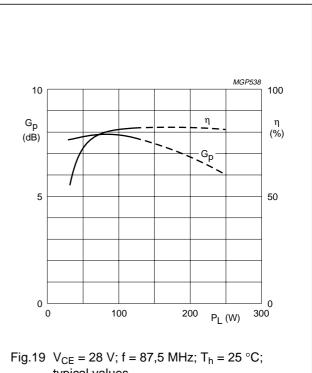
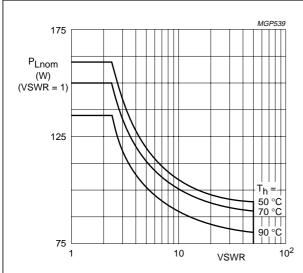


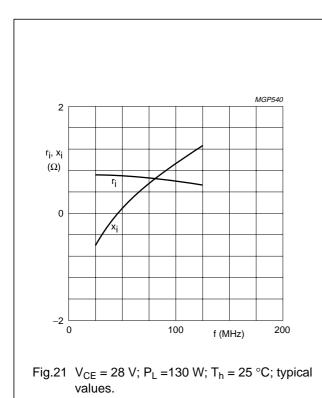
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

Product specification Philips Semiconductors

HF/VHF power transistor

BLW77


Fig.19 V_{CE} = 28 V; f = 87,5 MHz; T_h = 25 °C; typical values.

The graph shows the permissible output power under nominal conditions (VSWR = 1) as a function of the expected VSWR during short-time mismatch conditions with heatsink temperatures as parameter.

Fig.20 R.F. SOAR; c.w. class-B operation; $f = 87,5 \text{ MHz}; V_{CE} = 28 \text{ V};$ $R_{th mb-h} = 0.2 \text{ K/W}.$

BLW77

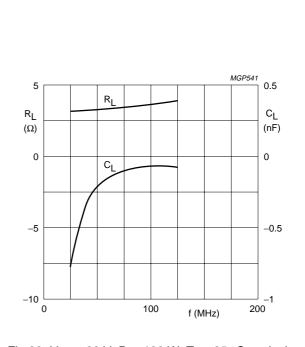
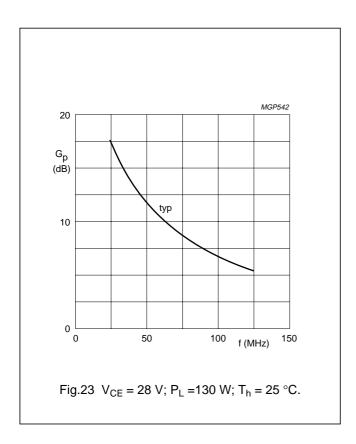
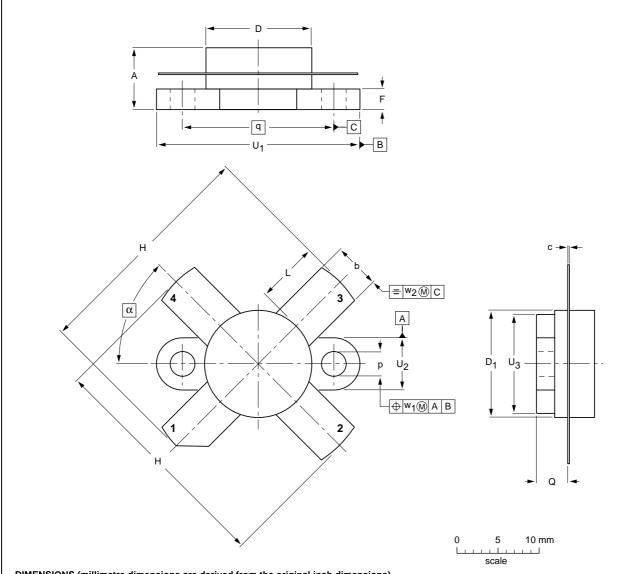



Fig.22 V_{CE} = 28 V; P_{L} =130 W; T_{h} = 25 °C; typical values.



BLW77

PACKAGE OUTLINE

Flanged ceramic package; 2 mounting holes; 4 leads

SOT121B

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	Α	b	С	D	D ₁	F	Н	L	р	Q	q	U ₁	U ₂	U ₃	w ₁	w ₂	α
mm	7.27 6.17	5.82 5.56		12.86 12.59	12.83 12.57		28.45 25.52	7.93 6.32	3.30 3.05	4.45 3.91	18.42	24.90 24.63		12.32 12.06	0.51	1.02	45°
inches	0.286 0.243			0.506 0.496								0.98 0.97		0.485 0.475		0.04	45*

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT121B					97-06-28

Product specification Philips Semiconductors

HF/VHF power transistor

BLW77

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.