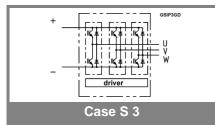

SKiiP 342GD120-314CTV ...

SKiiP[®] 2

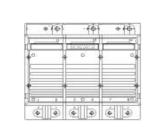
6-pack - integrated intelligent Power System

Power section


SKiiP 342GD120-314CTV

Features

- SKiiP technology inside
- Low loss IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 2 power section)
 UL recognized File no. E63532
- UL recognized File no. E63532 (SKiiP[®] 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)


Absolute	Maximum Ratings	_s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V _{CES}		1200	V			
V _{CC} ¹⁾	Operating DC link voltage	900	V			
V _{GES}		± 20	V			
I _C	T _s = 25 (70) °C	300 (225)	А			
Inverse diode						
I _F = - I _C	T _s = 25 (70) °C	300 (225)	А			
I _{FSM}	T _j = 150 °C, t _p = 10 ms; sin.	2160	А			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	23	kA²s			
T _j , (T _{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characteristics $T_s = 25 \degree C$						C unless o	C unless otherwise specified		
Symbol	Symbol Conditions			min.	typ.	max.	Units		
IGBT									
V _{CEsat}	I _C = 250 A	A, T _j = 25 (1	25) °C			2,6 (3,1)		V	
V _{CEO}	T _j = 25 (1						1,5 (1,6)	V	
r _{CE}	$T_{j} = 25 (1)$					5,3 (7)	6,3 (8,1)	mΩ	
I _{CES}	V _{GE} = 0 V	′, V _{CE} = V _{CE}	s,			(15)	0,4	mA	
	T _j = 25 (1								
E _{on} + E _{off}	I _C = 250 A	A, V _{CC} = 600	0 V				75	mJ	
	T _j = 125 °	C, V _{CC} = 90	00 V				132	mJ	
R _{CC' + EE'}	terminal chip, T _i = 125 °C					0,5		mΩ	
L _{CE}	top, botto					15		nH	
C _{CHC}	per phase	e, AC-side				1,4		nF	
Inverse o	Inverse diode								
$V_F = V_{EC}$	I _F = 250 A	A, T _i = 25 (1)	25) °C			2,1 (2)	2,6	V	
V _{TO}	T _i = 25 (1	25) °C				1,3 (1)	1,4 (1,1)	V	
r _T	T _j = 25 (1	25) °C				3,3 (4)	4,5 (5,2)	mΩ	
E _{rr}		A, V _{CC} = 600					10	mJ	
	T _j = 125 °	C, V _{CC} = 90	00 V				12	mJ	
Mechani	cal data								
M _{dc}	DC termir	nals, SI Unit	S		6		8	Nm	
M_{ac}		nals, SI Unit			13		15	Nm	
w	SKiiP [®] 2 System w/o heat sink					2,7		kg	
w	heat sink					6,6		kg	
Thermal	characte	eristics (P16 hea	t sink; 2	95 m ³ /h);	; " _, " refer	ence to		
tempera	ture sen	sor				I			
R _{th(j-s)I}	per IGBT						0,09	K/W	
R _{th(j-s)D}	per diode						0,25	K/W	
R _{th(s-a)}	per modu	le					0,036	K/W	
Z _{th}	R _i (mK/W) (max. values)			tau _i (s)					
	1	2	3	4	1	2	3	4	
Z _{th(j-r)I}	10	69	11		1	0,13	0,001		
Z _{th(j-r)D}	28	193	30		1	0,13	0,001		
Z _{th(r-a)}	11,1	18,3	3,5	3,1	204	60	6	0,02	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 342GD120-314CTV ...

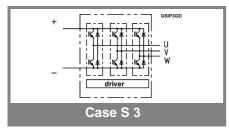
SKiiP[®] 2

6-pack - integrated intelligent Power System

6-pack integrated gate driver

SKiiP 342GD120-314CTV

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)Power supply protected against
- under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP[®] 2 gate driver)

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V _{S1}	stabilized 15 V power supply	18	V		
V _{S2}	unstabilized 24 V power supply	30	V		
V _{iH}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/µs		
V _{isolIO}	input / output (AC, r.m.s., 2s)	3000	Vac		
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac		
f _{max}	switching frequency	20	kHz		
T _{op} (T _{stg})	operating / storage temperature	- 25 + 85	°C		

Characteristics (T _a =					= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V _{S1}	supply voltage stabilized	14,4	15	15,6	V
V _{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	340+520	340+520*f/f _{max} +3,5*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	250+380	250+380*f/f _{max} +2,6*(I _{AC} /A)		
V _{iT+}	input threshold voltage (High)	11,2			V
V _{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		1,2		μs
t _{d(off)IO}	input-output turn-off propagation time		1,6		μs
t _{pERRRESET}	error memory reset time	9			μs
t _{TD}	top / bottom switch : interlock time		2,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		300		A
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 13/20/22/24/26			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		375		Α
I _{TRIPLG}	ground fault protection		87		А
T _{tp}	over temperature protection	110		120	°C
	trip level of U _{DC} -protection	900			V
-	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

