

3.5 GHz WIMAX REFERENCE DESIGN (1 W)

• PERFORMANCE (3.5 GHz)

(802.16-2004 WiMAX Modulation)

- ◆ 30 dBm Typical Output Power, < 2.5% EVM
- ♦ 14 dB Typical Small-Signal Gain
- ♦ Class B Efficiency 14% (8V / 720 mA I_{DQ})
- ♦ > 48 dBm 3rd Order Intercept Point
- ♦ Low total components count

DEMO BOARD SIZE: 1 x 2 in. (2.54 x 5.08 cm.) CONNECTORIZED VERSION SHOWN

DESCRIPTION AND APPLICATIONS

The FRD3500X230 is a 2-stage, connectorized Reference Design that delivers a typical linear power of 30 dBm with the 802.16-2004 modulation, while maintaining less than 2.5% EVM. The design features a FPD4000AS driver stage, followed by a FPD10000AF power output stage. Both stages are dual-biased to allow a range of bias conditions on each stage, allowing operation from Class B to Class A. Board layout and components list are included.

ELECTRICAL SPECIFICATIONS AT 22°C

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Operating Bandwidth	BW	Class A / AB / B		200		MHz
Small Signal Gain	SSG	Class A: $V_{DS} = 10V$; $I_{DQ} = 1.6 A$	14			dB
Gain Flatness	ΔG	Class A: $V_{DS} = 10V$; $I_{DQ} = 1.6 A$		± 1.5		dB
Center Frequency (adjustable)	$f_{ m CEN}$	Nominal bias conditions	3.4	3.5	3.6	
Power at 1dB Gain Compression	P_{1dB}	$V_{DS} = 10V; I_{DQ} = 1.6 A$		37.5		dBm
Class A - CW Single Tone						
Power Gain at dB Gain Compression	G_{1dB}	$V_{DS} = 10V; I_{DQ} = 1.6 A$		13		dB
Class A - CW Single Tone						
Channel Power with 802.16-2004	P_{CH}	Class AB Mode	31.0	31.5		dBm
2.5% max. EVM		$V_{DS} = 10 \text{ V}; I_{DQ} = 1.25 \text{ A}$				
Channel Power with 802.16-2004	P_{CH}	Class B Mode	29	30		dBm
2.5% max. EVM		$V_{DS} = 8 \text{ V}; I_{DQ} = 730 \text{ mA typ}.$				
Power-Added Efficiency	Eff	Class AB Mode		10		%
802.16-2004 modulation		Class B Mode		14		
Operating Current at 30 dBm P _{CH}	I_{OP}	$V_{DD} = 8.0 \text{ V}; V_{GG} = -1.20 / -0.89 \text{ V}$		0.9		A
Nominal Drain Supply	V_{DD}	All operating conditions		8		V
Nominal Gate Voltages	V_{GG}	V _{GG} 1 (1 st Stage)	-1.2			V
For Class B Operation		V _{GG} 2 (2 nd Stage)		-0.89		V
Total DC Power (operating)	P _{TOT}	Class B at $P_{CH} = 30 \text{ dBm}$		7.0		W

RECOMMENDED OPERATING BIAS CONDITIONS

Drain-Source Voltage: From 8V to 10V

Quiescent Current: From 700mA (Class B) to 1.6A (Class A)

ABSOLUTE MAXIMUM RATINGS¹

Parameter	Symbol	Test Conditions	Min	Max	Units
Drain Supply Voltage	$V_{ m DD}$	$-3V < V_{GS} < +0V$		12	V
Gate Supply Voltage	V_{GG}	$0\mathrm{V} < \mathrm{V}_\mathrm{DD} < +8\mathrm{V}$		-3	V
Operating Current	I_{OP}	For $V_{DS} > 2V$		1.8	A
Gate Current	I_G	Forward or reverse current		+60/-15	mA
RF Input Power ²	P_{IN}	Under any acceptable bias state		500	mW
Channel Operating Temperature	T_{CH}	Under any acceptable bias state		175	°C
Storage Temperature	T_{STG}	Non-Operating Storage	-40	150	°C
Total Power Dissipation	P _{TOT}	Ambient temperature to 85°C		12	W
Gain Compression	Comp.	Under any bias conditions		5	dB
Simultaneous Combination of Limits ³		2 or more Max. Limits	•	80	%

 $^{^{1}}T_{Ambient} = 22$ °C unless otherwise noted ^{2}Max . RF Input Limit must be further limited if input VSWR > 2.5:1

Notes:

• Operating conditions that exceed the Absolute Maximum Ratings could result in permanent damage to the devices.

HANDLING PRECAUTIONS

To avoid damage to the devices care should be exercised during handling. Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. This product has be tested to Class 1A (> 250V but < 500V) using JESD22 A114, Human Body Model, and to Class A, (< 200V) using JESD22 A115, Machine Model..


APPLICATIONS NOTES & DESIGN DATA

Recommendations on matching circuits is available from your local Filtronic Sales Representative or directly from the factory. User must ensure that proper bias sequencing is observed: Gate bias must be applied before Drain bias, and during power-down the Drain bias must be removed first.

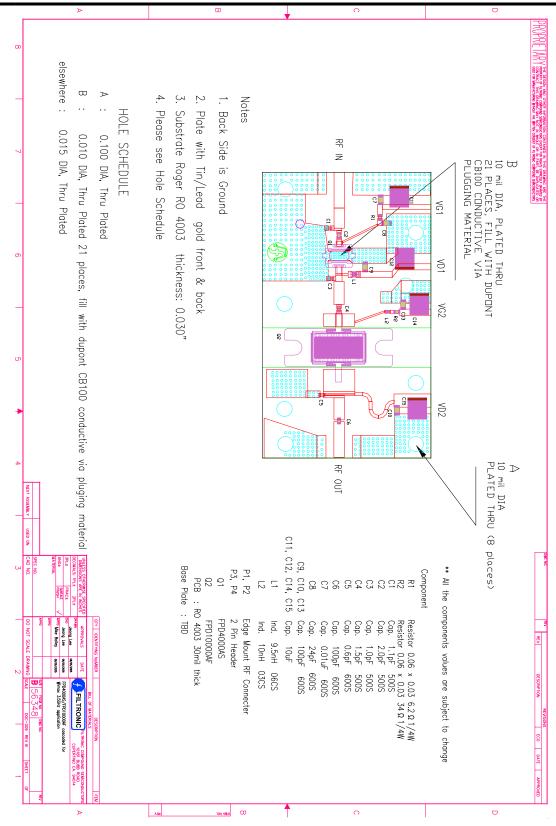
³Users should avoid exceeding 80% of 2 or more Limits simultaneously

TYPICAL SMALL-SIGNAL PERFORMANCE:

• TYPICAL CLASS AB / B CW PERFORMANCE:

Table 2 Linearity under Class AP bigs condition												
Table 2 Linearity under Class AB bias condition												
input total power	VDD1	VGG1	lds1	VDD2	VGG2	lds2	IM3	IM5	gain	Pout,total	Pdc	
no input power	7.00	-1.24	0.09	8.50	-0.89	0.63						
17dbm	7.00	-1.24	0.26	8.50	-0.89	0.70	-41.40	-46.00	12.00	29.00		7.77
18dbm	7.00	-1.24	0.29	8.50	-0.89	0.72	-42.50	-46.00	12.00	30.00		8.15
19dbm	7.00	-1.24	0.32	8.50	-0.89	0.74	-43.50	-47.00	12.00	31.00		8.53
20dbm	7.00	-1.24	0.35	8.50	-0.89	0.80	-43.00	-43.00	12.00	32.00		9.25

TYPICAL CLASS A CW PERFORMANCE:


Table 1 Power Sweep under Class A bias condition

Power Sv	veep:							
Pin							Comp	
(dBm)	Pout (dBm)	Gain (dB)	Id (mA)	Vds	Ig (uA)	Eff.	PAE	Point
11	25.4	14.4	1660.00	10.00		2.1%	2.0%	0.00
12	26.3	14.3	1660.00	10.00		2.6%	2.5%	0.02
13	27.4	14.4	1660.00	10.00		3.3%	3.2%	0.00
14	28.3	14.3	1660.00	10.00		4.1%	3.9%	0.03
15	29.3	14.3	1660.00	10.00		5.2%	5.0%	0.01
16	30.3	14.3	1670.00	10.00		6.5%	6.2%	0.01
17	31.3	14.3	1670.00	10.00		8.2%	7.9%	0.01
18	32.3	14.3	1680.00	10.00		10.2%	9.8%	0.03
19	33.3	14.3	1700.00	10.00		12.5%	12.1%	0.07
20	34.2	14.2	1810.00	10.00		14.4%	13.8%	0.20
21	35.2	14.2	1900.00	10.00		17.4%	16.7%	0.16
22	36.0	14.0	1990.00	10.00		20.1%	19.3%	0.32
23	36.8	13.8	1990.00	10.00		23.9%	22.9%	0.57
24	37.4	13.4	2100.00	10.00		26.4%	25.2%	0.91

Revised: 8/10/05

3.5 GHz WIMAX REFERENCE DESIGN (1 W)

All information and specifications are subject to change without notice.