

# 1011LD300

300 Watts, 32 Volts Pulsed Avionics 1030 to 1090 MHz LDMOS FET

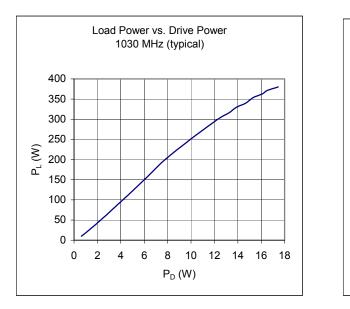
| <b>GENERAL DESCRIPTIO</b><br>The 1011LD300 is a COMMOU<br>lateral MOSFET capable of provid<br>MHz. The device is nitride passiv<br>highest MTTF. The transistor incl<br>Low thermal resistance package re | CASE OUTLINE<br>55QM<br>(Common Source) |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| ABSOLUTE MAXIMUM<br>Power Dissipation<br>Device Dissipation @25°C (P <sub>d</sub> )<br>Voltage and Current<br>Drain-Source (V <sub>DSS</sub> )                                                            | RATINGS<br>1590 W<br>75V                |  |
| Gate-Source (V <sub>GS</sub> )                                                                                                                                                                            | $\pm 20 \mathrm{V}$                     |  |
| <b>Temperatures</b><br>Storage Temperature<br>Operating Junction Temperature                                                                                                                              | -65 to +150°C<br>+200°C                 |  |

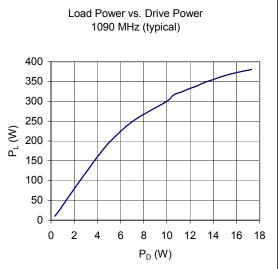
#### **ELECTRICAL CHARACTERISTICS** @ 25°C

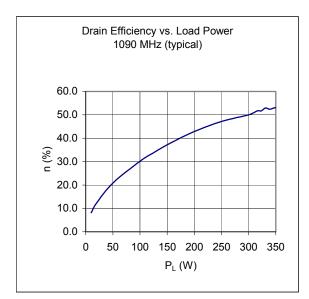
| SYMBOL              | CHARACTERISTICS              | TEST CONDITIONS                     | MIN | ТҮР | MAX | UNITS |
|---------------------|------------------------------|-------------------------------------|-----|-----|-----|-------|
| BV <sub>dss</sub>   | Drain-Source Breakdown       | $V_{gs} = 0V, I_d = 30mA$           | 75  |     |     | V     |
| I <sub>dss</sub>    | Drain-Source Leakage Current | $V_{ds} = 38V, V_{gs} = 0V$         |     |     | 10  | μΑ    |
| I <sub>gss</sub>    | Gate-Source Leakage Current  | $V_{gs} = 10V, V_{ds} = 0V$         |     |     | 2   | μΑ    |
| V <sub>gs(th)</sub> | Gate Threshold Voltage       | $V_{ds} = 10V, I_d = 60 \text{ mA}$ | 3   |     | 6   | V     |
| V <sub>ds(on)</sub> | Drain-Source On Voltage      | $V_{gs} = 10V, I_d = 3A$            |     |     | 0.3 | V     |
| g <sub>FS</sub>     | Forward Transconductance     | $V_{ds} = 10V, I_d = 3A$            |     | 3   |     | S     |
| $\theta_{JC}^{1}$   | Thermal Resistance           |                                     |     |     | .11 | °C/W  |

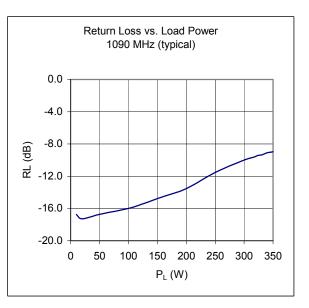
### FUNCTIONAL CHARACTERISTICS (a) 25°C, Vds = 32V, $I_{dq}$ = 750mA

| G <sub>PS</sub> | Common Source Power Gain | Pulse width = 32 $\mu$ s, LTDC=2%               | 13 | 14 |     | dB |
|-----------------|--------------------------|-------------------------------------------------|----|----|-----|----|
| Pd              | Pulse Droop              | F=1030/1090 MHz, P <sub>out</sub> = 300W        |    |    | 0.5 | dB |
| $\eta_d$        | Drain Efficiency         | $F = 1030 \text{ MHz}, P_{out} = 300 \text{ W}$ | 43 |    |     | %  |
| ψ               | Load Mismatch            | $F = 1090 \text{ MHz}, P_{out} = 300 \text{ W}$ |    |    | 3:1 |    |

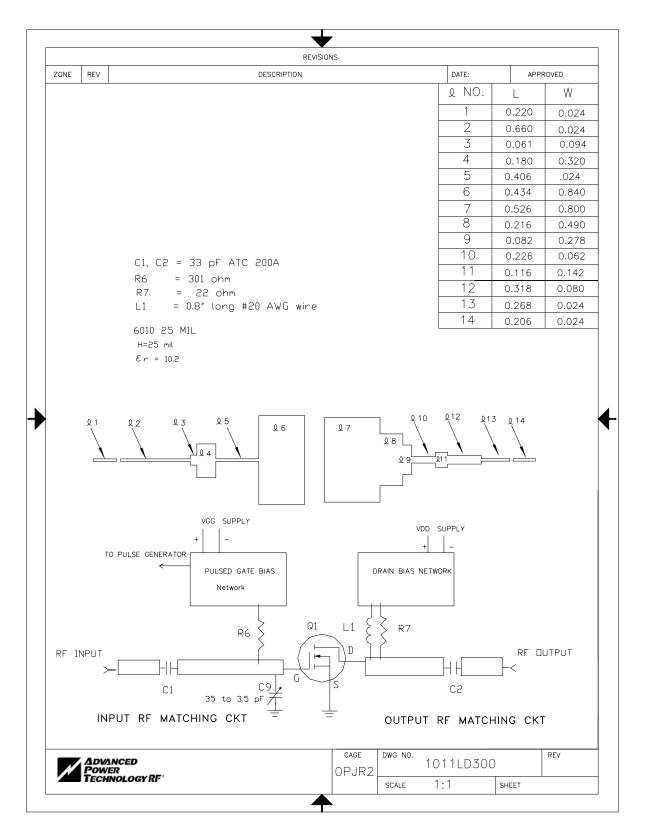

NOTES: 1. At rated output power and pulse conditions


2. Pulse Format 1: 32µs, 2% Long Term Duty Factor

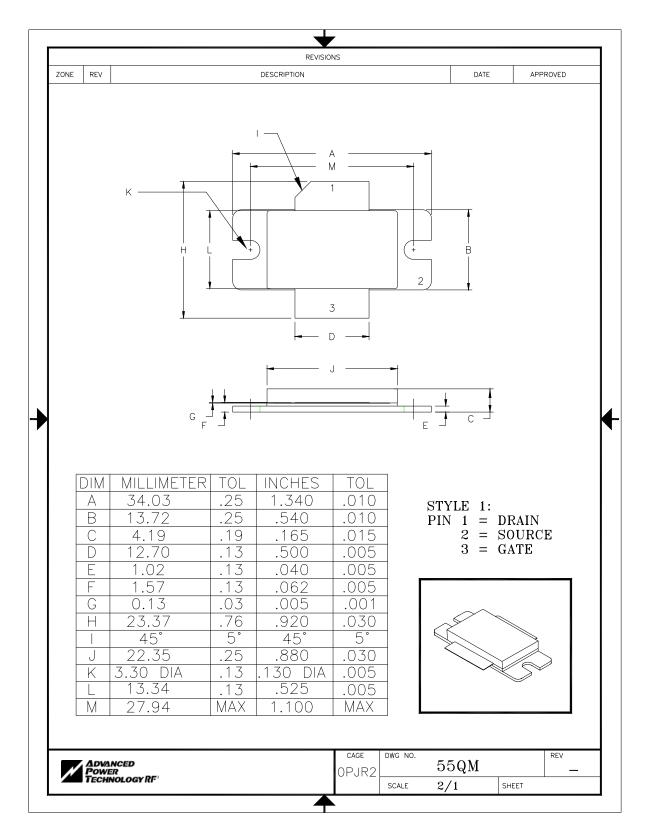

Rev. B - Apr 2004










### 1011LD300



## 1011LD300

