Simple Switcher
 3A Step- Down Voltage Regulator

PL2576-XXXF5

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and adjustable output versions.
- Adjustable version output voltage range, 1.23 V to $37 \mathrm{~V} \pm 4 \%$ max over line and load conditions.
- Guaranteed 3A output current.
- Wide input voltage range.
- Requires only 4 external components
- 52 kHz fixed frequency oscillator
- TTL shutdown capability, low power standby mode.
- High efficiency
- Uses readily available standard inductors.
- Thermal shutdown and current limit protection.

Description

The PL2576-XXXF5 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving 3A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and an adjustable output version. Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.
The PL2576-XXXF5 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in some cases no heat sink is required.
A standard series if inductors optimized for use with the PL2576 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring $50 \mu \mathrm{~A}$ (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

Applications

Simple high-efficiency step-down (buck) regulator.

- Efficient pre-regulator for linear regulators.
- On-card switching regulators.
- Positive to negative converter (Buck-Boost).

Typical Application (Fixed Output Voltage Version)

Figure. 1

Block Diagram

Ordering Information

Temperature Range	Output Voltage					Package
	3.3	5.0	12	15	ADJ	Type
$-40^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$	PL2576-3.3F5	PL2576-5.0F5	PL2576-12F5	PL2576-15F5	PL2576-ADJF5	TO-263-5L

Absolute Maximum Ratings (Note 1)
Maximum supply voltage 45 V
ON/OFF pin input voltage $-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{Vin}$
Output voltage to ground (steady state) -1V
Power dissipation Internally limited
Storage temperature range. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum junction temperature $150^{\circ} \mathrm{C}$
Minimum ESD rating ($\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$). 2 kV
Lead temperature (Soldering, 10 seconds) $260^{\circ} \mathrm{C}$

Operating Ratings

Temperature range.. $40^{\circ} \mathrm{C} \leq \mathrm{Tu} \leq+125^{\circ} \mathrm{C}$
\qquadSupply voltage40 V

PL2576-3.3 Electrical Characteristics

Specifications with standard type face are for $\mathrm{TJ}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full operating temperature range

Symbol	Parameter	Conditions	Typ	Min	Max	Units
System Parameters (Note 3) Test Circuit Figure 2						
Vout	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{ILOAD}=0.5 \mathrm{~A}$ Circuit of Figure 2	3.3	3.234	3.336	V
Vout	Output Voltage	$\begin{aligned} & 6 \mathrm{~V} \leq \mathrm{V} \text { IN } \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{I} \text { LOAD } \leq 3 \mathrm{~A} \\ & \text { Circuit of Figure } 2 \end{aligned}$	3.3	3.168/3.135	3.432/3.465	V
η	Efficiency	VIN=12V, ILOAD $=3 \mathrm{~A}$	75			\%

PL2576-5.0 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full operating temperature range

Symbol	Parameter	Conditions	Typ	Min	Max	Units
System Parameters (Note 3) Test Circuit Figure 2						
Vout	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{ILOAD}=0.5 \mathrm{~A}$ Circuit of Figure 2	5.0	4.9	5.1	V
Vout	Output Voltage	$8 \mathrm{~V} \leq \mathrm{VIN} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{ILOAD} \leq 3 \mathrm{~A}$ Circuit of Figure 2	3.3	4.800/4.750	5.200/5.250	V
η	Efficiency	VIN=12V, ILOAD=3A	77			\%

PL2576-12 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full operating temperature range

Symbol	Parameter	Conditions	Typ	Min	Max	Units
System Parameters (Note 3) Test Circuit Figure 2						
Vout	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$, ILOAD $=0.5 \mathrm{~A}$ Circuit of Figure 2	12	11.76	12.24	V
Vout	Output Voltage	$15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq$ ILOAD $\leq 3 \mathrm{~A}$ Circuit of Figure 2	12	11.52/11.40	12.48/12.60	V
η	Efficiency	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$, ILOAD $=3 \mathrm{~A}$	88			\%

PL2576-15 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full operating temperature range

Symbol	Parameter	Conditions	Typ	Min	Max	Units
System Parameters (Note 3) Test Circuit Figure 2						
Vout	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{ILOAD}=0.5 \mathrm{~A}$ Circuit of Figure 2	15	14.7	15.3	V
Vout	Output Voltage	$18 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \operatorname{ILOAD} \leq 3 \mathrm{~A}$ Circuit of Figure 2	3.3	14.40/14.25	15.60/15.75	V
η	Efficiency	$\mathrm{V}_{\text {IN }}=18 \mathrm{~V}$, ILOAD $=3 \mathrm{~A}$	88			\%

PL2576-ADJ Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full operating temperature range

Symbol	Parameter	Conditions	Typ	Min	Max	Units
System Parameters (Note 3) Test Circuit Figure 2						
Vout	Feedback Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, ILOAD $=0.5 \mathrm{~A}$, Vout $=5 \mathrm{~V}$, Circuit of Figure 2	1.230	1.217	1.243	V
Vout	Feedback Voltage	$8 \mathrm{~V} \leq \mathrm{VIN} \leq 40 \mathrm{~V}, 0.5 \mathrm{~A} \leq \mathrm{ILOAD} \leq 3 \mathrm{~A}$ Vout $=5 \mathrm{~V}$, Circuit of Figure 2	1.230	1.193/1.180	1.267/1.280	V
η	Efficiency	$\begin{aligned} & \text { VIN }=12 \mathrm{~V}, \text { ILOAD }=3 \mathrm{~A}, \\ & \text { Vout }=5 \mathrm{~V} \end{aligned}$	77			\%

CYStech Electronics Corp.

All Output Voltage Versions Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full operating temperature range. Unless otherwise specified, $\mathrm{VIN}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5.0 \mathrm{~V}$, and adjustable versions, $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$ for the 12 V version, and $\mathrm{VIN}=30 \mathrm{~V}$ for the 15 V version. Iload= $=500 \mathrm{~mA}$.

Symbol	Parameter	Conditions	Typ	Min	Max	Units
Ib	Feedback bias current	VouT=5V (adjustable version only)	50	-	$100 / \mathbf{5 0 0}$	nA
fo	Oscillator frequency	(Note 8)	52	$47 / \mathbf{4 2}$	$58 / \mathbf{6 3}$	kHz
VSAT	Saturation voltage	IouT=3A (Note 4)	1.4	-	$1.8 / \mathbf{2 . 0}$	V
DC	Maximum duty cycle (ON)	(Note 5)	98	93	-	$\%$
IcL	Current limit	(Notes 4, 8)	5.8	$4.2 / \mathbf{3 . 5}$	$6.9 / 7.5$	A
IL	Output leakage current	(Notes 6, 7) Output =0VOutput $=-1 \mathrm{~V}$	-	-	2	mA
IQ	Quiescent current	(Note 6)	5	-	30	10
ISTBY	Standby quiescent current	ON/OFF pin=5V (OFF)	50	-	200	$\mu \mathrm{~mA}$

ON/OFF Control

VIH	ON/OFF pin logic input level	Vout $=0 \mathrm{~V}$	1.4	2.2/2.4	-	V
VIL		Vout=Nominal output voltage	1.2	-	1.0/0.8	V
IIH	ON/OFF pin input current	ON/OFF pin=5V (OFF)	12	-	30	$\mu \mathrm{A}$
IIL		ON/OFF pin=0V (ON)	0	-	10	$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2 : All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face).
Note 3 : External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the PL2576 is used as shown in the figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.

Note 4 : Output pin sourcing current. No diode, inductor or capacitor connected to output.
Note 5 : Feedback pin removed from output and connected to 0 V .
Note 6 : Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.

Note 7 : VIN=40V.
Note 8 : The oscillator frequency reduces to approximately 11 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

Typical Performance Characteristics (circuit of Figure 2)

Normalized Output Voltage

Dropout Voltage

Quiescent Current

Line Regulation

Standby Quiescent Current

Current Limit

CYStech Electronics Corp.

Switch Saturation Voltage

Oscillator Frequency

Junction Temperature (${ }^{\circ} \mathrm{C}$)

Quiescent Current vs Duty Cycle

Efficiency

Minimum Operating Voltage

Feedback Voltage vs Duty Cycle

CYStech Electronics Corp.

Minimum Power Dissipation

Switching Waveforms

| $\mathrm{A}\left\{\begin{array}{c}50 \mathrm{~V} \\ 0\end{array} \mathrm{~A}\right.$ |
| :--- | P

$5 \mu \mathrm{~s} / \operatorname{div}$

VOUT $=15 \mathrm{~V}$

A : Output Pin Voltage, $50 \mathrm{~V} /$ div
B : Output Pin Current, 2A / div
C : Inductor Current, 2A / div
D : Output Ripple Voltage, $50 \mathrm{mV} /$ div AC Coupled
Horizontal Time Base : $5 \mu \mathrm{~s} / \mathrm{div}$

Feedback Pin Current

Load Transient Response

Test Circuit and Layout Guidelines

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible. Single-point grounding (as indicated) or ground plane construction should be used for best results. When using the Adjustable version, physically locate the programming resistors near the regulator, to keep the sensitive feedback wiring short.

Fixed Output Voltage Versions

Cin--100 $\mu \mathrm{F}, 75 \mathrm{~V}$, Aluminum Electrolytic
Cout-- $1000 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic
D1--Schottky, MBR360
L1--100 $\mu \mathrm{H}$, Pulse Eng, PE92108
R1--2k, 0.1\%
R2--6.12k, 0.1\%

Adjustable Output Voltage Version

$\operatorname{Vout}=\operatorname{VREF}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$
$R 2=R 1\left(\frac{\text { Vout }}{\text { VREF }}-1\right)$
where $\mathrm{VREF}=1.23 \mathrm{~V}$, R 1 between 1 k and 5 k
Figure 2

CYStech Electronics Corp.

TO-263-5L Dimension

*: Typical

DIM	Inches		Millimeters		DIM	Inches		Millimeters	
	Min.	Max.	Min.	Max.		Min.	Max.	Min.	Max.
A	0.176	0.184	4.47	4.67	E	0.323	0.339	0.820	0.860
A1	0	0.006	0	0.150	e	0.067 (typical)		1.700(typical)	
B	0.061	0.069	1.560	1.760	e1	0.264	0.272	0.670	0.690
b	0.028	0.036	0.710	0.910	L	0.596	0.612	15.140	15.540
c	0.012	0.021	0.310	0.530	L1	0.200	0.216	5.080	5.480
c1	0.046	0.054	1.170	1.370	L2	0.092	0.108	2.340	2.740
D	0.389	0.401	9.880	10.180	V	0.220REF		5.600REF	

Notes: 1.Controlling dimension: inch
2.Maximum lead thickness includes lead finish thickness, and minimum lead thickness is the minimum thickness of base material. 3.If there is any question with packing specification or packing method, please contact your local CYStek sales office.

Material:

- Lead: 42 Alloy ; solder plating
- Mold Compound: Epoxy resin family, flammability solid burning class: UL94V-0

Important Notice:

- All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of CYStek.
- CYStek reserves the right to make changes to its products without notice.
- CYStek semiconductor products are not warranted to be suitable for use in Life-Support Applications, or systems.
- CYStek assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.

