TOSHIBA 2SK2614

TOSHIBA FIELD EFFECT TRANSISTOR SILICON N CHANNEL MOS TYPE (L²-π-MOS V)

2 S K 2 6 1 4

HIGH SPEED, HIGH CURRENT SWITCHING APPLICATIONS CHOPPER REGULATOR, DC-DC CONVERTER AND MOTOR DRIVE **APPLICATIONS**

4V Gate Drive

Low Drain-Source ON Resistance : $R_{DS(ON)} = 0.032\Omega$ (Typ.)

High Forward Transfer Admittance : $|Y_{fs}| = 8S$ (Typ.)

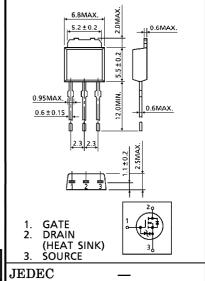
Low Leakage Current : $I_{DSS} = 100 \mu A$ (Max.)

 $(V_{DS} = 50V)$

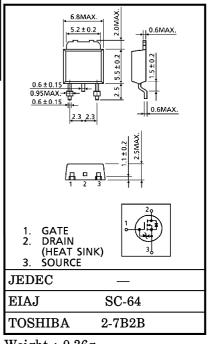
: $V_{th} = 0.8 \sim 2.0 V$ Enhancement-Mode

 $(V_{DS} = 10V, I_D = 1mA)$

MAXIMUM RATINGS (Ta = 25°C)


CHARACTERIST	SYMBOL	RATING	UNIT		
Drain-Source Voltage	$ m V_{DSS}$	50	V		
Drain-Gate Voltage ($R_{GS} = 20 k\Omega$)		$v_{ m DGR}$	50	V	
Gate-Source Voltage		v_{GSS}	±20	V	
Drain Current	DC	$I_{\mathbf{D}}$	20	A	
	Pulse	$I_{ m DP}$	50		
Drain Power Dissipation (Tc=25°C)		$P_{\mathbf{D}}$	40	W	
Channel Temperature		$\mathrm{T_{ch}}$	150	°C	
		$\mathrm{T_{stg}}$	-55~150	°C	

THERMAL CHARACTERISTICS


CHARACTERISTIC	SYMBOL	MAX.	UNIT
Thermal Resistance, Channel to Case	R _{th (ch-c)}	3.125	°C/W
Thermal Resistance, Channel to Ambient	R _{th (ch-a)}	125	°C/W

This transistor is an electrostatic sensitive device. Please handle with caution.

INDUSTRIAL APPLICATIONS Unit in mm

3.		
JEDEC	_	
EIAJ	SC-64	
TOSHIBA	2-7B1B	

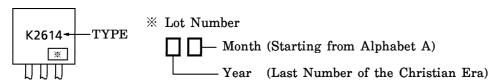
Weight: 0.36g

961001EAA2

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.


ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARAC	CTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage	Current	$I_{ m GSS}$	$V_{GS} = \pm 16V, V_{DS} = 0V$	<u> </u>	_	±10	μ A
Drain Cut-off	Current	$I_{ m DSS}$	$V_{DS}=50V, V_{GS}=0V$	_	_	100	μ A
Drain-Source Voltage	Breakdown	V (BR) DSS	$I_D=10$ mA, $V_{GS}=0$ V	50	_	_	V
Gate Threshol	ld Voltage	v_{th}	$V_{DS}=10V, I_{D}=1mA$	0.8	_	2.0	V
Drain-Source	ON Resistance	R _{DS} (ON)	$V_{GS}=4V, I_{D}=5A$ $V_{GS}=10V, I_{D}=10A$	_	0.055	0.08	Ω
Forward Tran Admittance	sfer	Y _{fs}	$V_{DS} = 10V, I_{D} = 10A$	7	13	-	S
Input Capacit	ance	$\mathrm{c}_{\mathrm{iss}}$		_	900	_	
Reverse Transfer Capacitance		$\mathrm{C}_{\mathbf{rss}}$	V_{DS} =10V, V_{GS} =0V, f=1MHz	_	130	_	pF
Output Capacitance		C_{oss}		_	370	_	
Switching Time Fall Tin	Rise Time	$t_{f r}$	V_{GS}_{0V} $R_{L}=3\Omega$	_	15	_	
	Turn-on Time	t _{on}	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	_	25	_	ns
	Fall Time	t_f	\ \frac{\frac{1}{2}}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	30	_	115
	Turn-off Time	toff	$egin{aligned} ext{V}_{ ext{IN}}: ext{t}_{ ext{r}}, ext{t}_{ ext{f}} {<} 5 ext{ns}, \ ext{Duty} & \leq 1\%, ext{t}_{ ext{w}} {=} 10 \mu ext{s} \end{aligned}$	_	100	_	
Total Gate Charge (Gate- Source Plus Gate-Drain)		$\mathbf{Q}_{\mathbf{g}}$	V _{DD} ≒40V, V _{GS} =10V, I _D =20A	_	25	_	nC
Gate-Source Charge		$\mathbf{Q}_{\mathbf{g}\mathbf{s}}$	VDD-40V, VGS-10V, 1D-20A		19		
Gate-Drain ("Miller") Charge		\mathbf{Q}_{gd}		_	6	_	

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Continuous Drain Reverse Current	$I_{ m DR}$	_	_	_	20	A
Pulse Drain Reverse Current	$I_{ m DRP}$	_	_	_	50	Α
Diode Forward Voltage	$V_{ m DSF}$	I_{DR} =20A, V_{GS} =0V	_	_	-1.7	V
Reverse Recovery Time	t_{rr}	I_{DR} =20A, V_{GS} =0V	_	60	_	ns
Reverse Recovery Charge	Q_{rr}	$dI_{ m DR}$ / dt = 50A / $\mu m s$	_	45	_	μ C

MARKING

