$V_{RRM} = 6000 V$

 $I_{FAVM} = 250 A$

 $I_{FSM} = 3.6 \text{ kA}$

 $V_{F0} = 2.5 V$

 $r_F = 2.5 \text{ m}\Omega$

 $V_{DClink} = 3000 V$

Fast Recovery Diode

5SDF 02D6002

PRELIMINARY

Doc. No. 5SYA1108-02 Sep. 01

- · Patented free-floating silicon technology
- Low switching losses
- Optimized for use as snubber diode in high-voltage GTO converters
- Standard press-pack ceramic housing, hermetically cold-welded
- · Cosmic radiation withstand rating

Blocking

V_{RRM}	Repetitive peak reverse voltage	6000 V	Half sine wave, t_P = 10 ms, f = 50 Hz		
I _{RRM}	Repetitive peak reverse current	≤ 50 mA	$V_R = V_{RRM}$, $T_j = 125$ °C		
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	3000 V	100% Duty	Ambient cosmic radiation at sea level in open air.	
V_{DClink}	Permanent DC voltage for 100 FIT failure rate	3800 V	5% Duty		

Mechanical data (see Fig. 7)

ш	Mounting force min.		10 kN
F _m	max.		12 kN
а	Acceleration: Device unclamped Device clamped		50 m/s ² 200 m/s ²
m	Weight		0.25 kg
Ds	Surface creepage distance	≥	30 mm
Da	Air strike distance	2	20 mm

On-state (see Fig. 2, 3)

I _{FAVM}	Max. average on-state current	250	Α	Half s	sine w	ave, T _c = 8	35°C
I _{FRMS}	Max. RMS on-state current	400	Α				
I _{FSM}	Max. peak non-repetitive	3.6	kA	tp	=	10 ms	Before surge:
	surge current	11.4	kA	tp	=	1 ms	$T_c = T_j = 125^{\circ}C$
∫l ² dt	Max. surge current integral	65·10 ³	A ² s	tp	=	10 ms	After surge:
		65·10 ³	A ² s	tp	=	1 ms	$V_R \approx 0 \text{ V}$
V _F	Forward voltage drop	≤ 5	V	I _F	=	1000 A	
V _{F0}	Threshold voltage	2.5	V	Ap	proxi	mation for	T _j = 125°C
r _F	Slope resistance	2.5	mΩ	I _F	= 200	04000	A

Turn-on (see Fig. 4, 5)

V _{fr}	Peak forward recovery voltage	≤	370 V	di/dt = 1000 A/µs, T _j = 125°C
-----------------	-------------------------------	----------	-------	---

Turn-off (see Fig. 6)

Irr	Reverse recovery current	≤	260 A	di/dt = 100 A/μs,	T _j = 125 °C,
Q _{rr}	Reverse recovery charge	≤	2000 μC	I _F = 1000 A,	$V_{RM} = 6000 V,$
Err	Turn-off energy	≤	J	$R_S = 22 \Omega$,	C _S = 0.22 μF

Thermal (see Fig. 01)

Tj	Operating junction temperature range	-40125°C		
T _{stg}	Storage temperature range	-40125°C		
R _{thJC}	Thermal resistance junction to case	≤ 80 K/kW	Anode side cooled	
		≤ 80 K/kW	Cathode side cooled	F _m =
		≤ 40 K/kW	Double side cooled	10 12 kN
R _{thCH}	Thermal resistance case to heatsink	≤ 16 K/kW	Single side cooled	
		≤ 8 K/kW	Double side cooled	

Analytical function for transient thermal impedance.

$$Z_{\text{thJC}}(t) = \sum_{i=1}^{n} R_{i}(1 - e^{-t/\tau_{i}})$$

i	1	2	3	4			
R _i (K/kW)	20.95	10.57	7.15	1.33			
τ _i (s) 0.396 0.072 0.009 0.0044							
F _m = 10 12 kN Double side cooled							

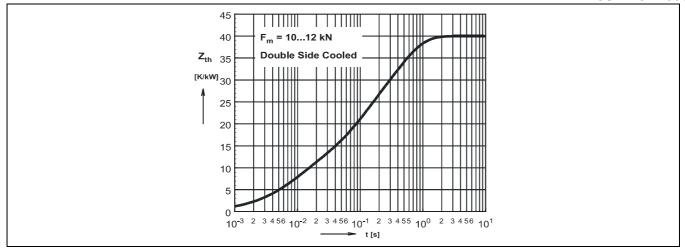


Fig. 1 Transient thermal impedance (junction to case) vs. time in analytical and graphical form (max. values).

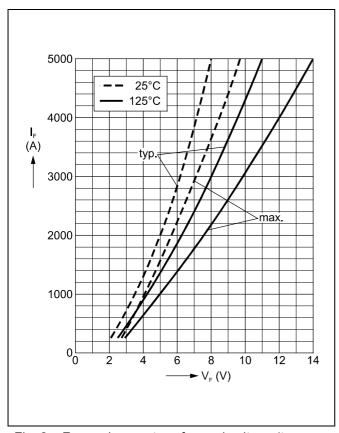


Fig. 2 Forward current vs. forward voltage (typ. and max. values).

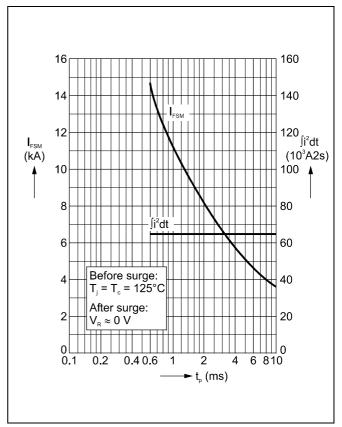


Fig. 3 Surge current and fusing integral vs. pulse width (max. values) for non repetitive, half-sinusoidal surge current pulses.

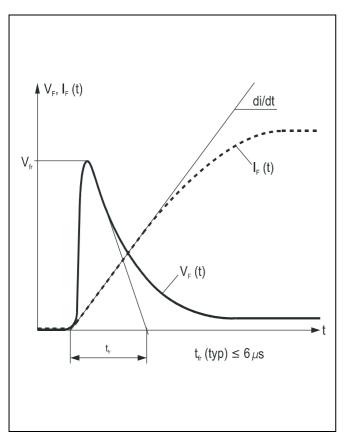


Fig. 4 Typical forward voltage waveform when the diode is turned on with a high di/dt.

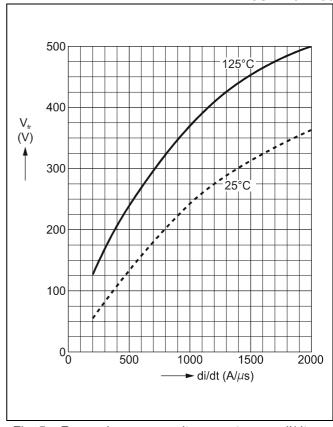


Fig. 5 Forward recovery voltage vs. turn-on di/dt (max. values).

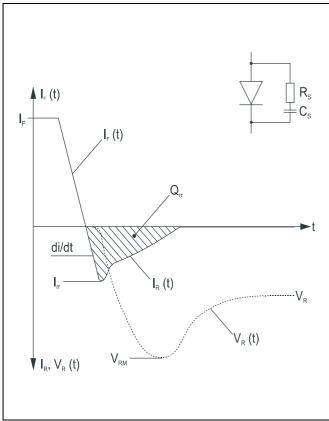


Fig. 6 Typical current and voltage waveforms at turn-off with conventional RC snubber circuit

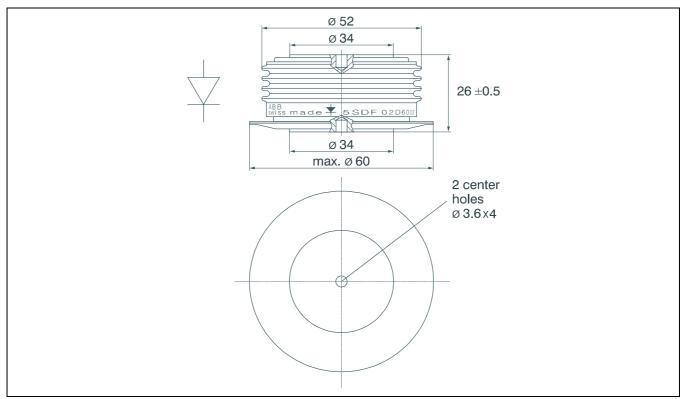


Fig. 7 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG

Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland

Telephone +41 (0)62 888 6419
Fax +41 (0)62 888 6306
Email abbsem@ch.abb.com
Internet www.abbsem.com

Doc. No. 5SYA1108-02 Sep. 01