Octal latched transceiver with dual enable; inverting; 3-state

Rev. 03 - 20 April 2005
Product data sheet

1. General description

The 74ABT544 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT544 octal latched transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate latch enable ($\overline{\mathrm{LEAB}}$ and $\overline{\mathrm{LEBA}}$) and output enable ($\overline{\mathrm{OEAB}}$ and $\overline{\mathrm{OEBA}})$ inputs are provided for each register to permit independent control of data transfer in either direction. The outputs are guaranteed to sink 64 mA .

The 74ABT544 contains two sets of eight D-type latches, with separate control pins for each set. Using data flow from A to B as an example, when the A-to-B enable ($\overline{E A B}$) input and the A-to-B latch enable ($\overline{\mathrm{LEAB}}$) input are LOW, the A-to-B path is transparent. A subsequent LOW-to-HIGH transition of the $\overline{\mathrm{LEAB}}$ signal puts the A data into the latches where it is stored and the B outputs no longer change with the A inputs. With $\overline{E A B}$ and $\overline{O E A B}$ both LOW, the 3-state B output buffers are active and invert the data present at the outputs of the A latches.

Control of data flow from B to A is similar, but using the $\overline{E B A}, \overline{L E B A}$ and $\overline{O E B A}$ inputs.

2. Features

[^0]
3. Quick reference data

Table 1: Quick reference data
$T_{\text {amb }}=25^{\circ} \mathrm{C}$; GND $=0 \mathrm{~V}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
tpLH	propagation delay An to Bn or Bn to An	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-	3.0	-	ns
$\mathrm{t}_{\text {PHL }}$	propagation delay An to Bn or Bn to An	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-	3.6	-	ns
C_{I}	input capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}		-	4	-
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I / O capacitance	outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	-	7	-	pF
I_{CC}	quiescent supply current	outputs 3-state; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	110	-	$\mu \mathrm{A}$

4. Ordering information

Table 2: Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74ABT544D	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1
74ABT544N	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DIP24	plastic dual in-line package; 24 leads (300 mil)	SOT222-1
$74 \mathrm{ABT544DB}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SSOP24	plastic shrink small outline package; 24 leads; body width $5.3 ~$	SOT340-1

5. Functional diagram

Fig 3. Logic diagram

6. Pinning information

6.1 Pinning

Fig 4. Pin configuration

6.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
$\overline{\text { LEBA }}$	1	B-to-A latch enable input (active LOW)
$\overline{\text { OEBA }}$	2	B-to-A output enable input (active LOW)
A0	3	port A, 3-state output 0
A1	4	port A, 3-state output 1
A2	5	port A, 3-state output 2
A3	6	port A, 3-state output 3
A4	7	port A, 3-state output 4
A5	8	port A, 3-state output 5
A6	9	port A, 3-state output 6
A7	10	port A, 3-state output 7
$\overline{\text { EAB }}$	11	A-to-B enable input (active LOW)
GND	12	ground (0 V)
$\overline{\text { OEAB }}$	13	A-to-B output enable input (active LOW)
$\overline{\text { LEAB }}$	14	A-to-B latch enable input (active LOW)
B7	15	port B, 3-state output 7
B6	16	port B, 3-state output 6
B5	17	port B, 3-state output 5
B4	18	port B, 3-state output 4

Table 3: Pin description ...continued

Symbol	Pin	Description
B3	19	port B, 3-state output 3
B2	20	port B, 3-state output 2
B1	21	port B, 3-state output 1
$B 0$	22	port B, 3-state output 0
$\overline{\text { EBA }}$	23	B-to-A enable input (active LOW)
$V_{C C}$	24	supply voltage

7. Functional description

7.1 Function table

Table 4: Function table [1]

Status	Control			Input	Output
	OExx	Exx	LExx	An or Bn	An or Bn
Disabled	H	X	X	X	Z
	X	H	X	X	Z
Disabled + latch	L	\uparrow	L	h	Z
				1	Z
Latch + display	L	L	\uparrow	h	L
				I	H
Transparent	L	L	L	H	L
				L	H
Hold	L	L	H	X	NC

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level;
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition;
L = LOW voltage level;
I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition;
X = don't care;
$\uparrow=$ LOW-to-HIGH clock transition;
$\mathrm{NC}=$ no change;
Z = high-impedance OFF-state.

8. Limiting values

Table 5: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{\text {CC }}$	supply voltage		-0.5	+7.0	V
V_{1}	input voltage		[1] -1.2	+7.0	V
V_{0}	output voltage	output in OFF-state or HIGH-state	[1] -0.5	+5.5	V
I_{IK}	input diode current	$\mathrm{V}_{1}<0 \mathrm{~V}$	-	-18	mA
lok	output diode current	$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-	-50	mA
Io	output current	output in LOW-state	-	128	mA
T_{j}	junction temperature		[2]	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.
9. Recommended operating conditions

Table 6: Recommended operating conditions
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{CC}	supply voltage	4.5	-	5.5	V	
$\mathrm{~V}_{\mathrm{I}}$	input voltage	0	-	V_{CC}	V	
V_{IH}	HIGH-level input voltage	2.0	-	-	V	
V_{IL}	LOW-level Input voltage	-	-	0.8	V	
I_{OH}	HIGH-level output current		-	-	-32	mA
I_{OL}	LOW-level output current	-	-	64	mA	
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise or fall rate		0	-	10	$\mathrm{~ns} / \mathrm{V}$
$\mathrm{T}_{\text {amb }}$	ambient temperature	in free air	-40	-	+85	${ }^{\circ} \mathrm{C}$

10. Static characteristics

Table 7: Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{IK}	input diode voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$	-	-0.9	-1.2	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}				
		$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.5	3.2	-	V
		$\mathrm{l}_{\mathrm{OH}}=-32 \mathrm{~mA}$	2.0	2.3	-	V
		$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V} ; \mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$				
		$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	3.0	3.7	-	V
V_{OL}	LOW-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	-	0.42	0.55	V
$\mathrm{V}_{\text {RST }}$	restart LOW-level output voltage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	[1]	0.13	0.55	V
	input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=$ GND or 5.5 V				
	control pins		-	± 0.01	± 1.0	$\mu \mathrm{A}$
	data pins		-	± 5	± 100	$\mu \mathrm{A}$
loff	power-down leakage current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$	-	± 5.0	± 100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{PU}}, \mathrm{IPD}$	power-up or power-down 3-state output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OExx}}=\text { don't care } \end{aligned}$	[2] -	± 5.0	± 50	$\mu \mathrm{A}$
loz	3 -state output current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$; $\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$				
		output HIGH-state at $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$	-	5.0	50	$\mu \mathrm{A}$
		output LOW-state at $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	-	-5.0	-50	$\mu \mathrm{A}$
$I_{\text {CEX }}$	output HIGH-state leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	-	5.0	50	$\mu \mathrm{A}$
I_{0}	output current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	[3] -50	-65	-180	mA
I_{CC}	quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}				
		outputs HIGH-state	-	110	250	$\mu \mathrm{A}$
		outputs LOW-state	-	20	30	mA
		outputs 3-state	-	110	250	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional supply current per input pin	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; one input at 3.4 V and other inputs at V_{CC} or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		0.3	1.5	mA
C_{1}	input capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	-	4	-	pF
$\mathrm{C}_{1 / \mathrm{O}}$	I/O capacitance	outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	-	7	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
$\mathrm{V}_{\text {IK }}$	input diode voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$	-	-	-1.2	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}				
		$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.5	-	-	V
		$\mathrm{l}_{\mathrm{OH}}=-32 \mathrm{~mA}$	2.0	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}				
		$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	3.0	-	-	V
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	-	-	0.55	V
$\mathrm{V}_{\text {RST }}$	restart LOW-level output voltage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	[1]	-	0.55	V

Table 7: Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or 5.5 V				
	control pins		-	-	± 1.0	$\mu \mathrm{A}$
	data pins		-	-	± 100	$\mu \mathrm{A}$
loff	power-down leakage current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$	-	-	± 100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{PU}}, \mathrm{I}_{\mathrm{PD}}$	power-up or power-down 3-state output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OExx}}=\text { don't care } \end{aligned}$	[2] -	-	± 50	$\mu \mathrm{A}$
l Oz	3-state output current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\text {I }}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}				
		output HIGH-state at $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$	-	-	50	$\mu \mathrm{A}$
		output LOW-state at $\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	-	-	-50	$\mu \mathrm{A}$
$I_{\text {CEX }}$	output HIGH-state leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	-	-	50	$\mu \mathrm{A}$
l_{0}	output current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	[3] -50	-	-180	mA
$I_{\text {cc }}$	quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}				
		outputs HIGH-state	-	-	250	$\mu \mathrm{A}$
		outputs LOW-state	-	-	30	mA
		outputs 3-state	-	-	250	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional supply current per input pin	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; one input at 3.4 V and other inputs at V_{CC} or GND ; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		-	1.5	mA

[1] For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
[2] This parameter is valid for any $\mathrm{V}_{C C}$ between 0 V and 2.1 V , with a transition time of up to 10 ms . From $\mathrm{V}_{C C}=2.1 \mathrm{~V}$ to $\mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%$ a transition time of up to $100 \mu \mathrm{~s}$ is permitted.
[3] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
[4] This is the increase in supply current for each input at 3.4 V .

11. Dynamic characteristics

Table 8: Dynamic characteristics
GND = 0 V; for test circuit see Figure 10.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$						
$t_{\text {PLH }}$	propagation delay					
	An to Bn, Bn to An	see Figure 5	1.7	3.0	3.8	ns
	$\overline{\text { LEBA }}$ to An, $\overline{\text { LEAB }}$ to Bn	see Figure 5 and 6	2.1	3.5	4.2	ns
$\mathrm{t}_{\text {PHL }}$	propagation delay					
	An to Bn, Bn to An	see Figure 5	2.4	3.6	4.5	ns
	$\overline{\text { LEBA }}$ to An, $\overline{\text { LEAB }}$ to Bn	see Figure 5 and $\underline{6}$	3.0	4.4	5.3	ns
$t_{\text {PZH }}$	output enable time to HIGH-level					
	$\overline{\text { OEBA }}$ to An, OEAB to Bn	see Figure 7	1.8	3.0	3.9	ns
	$\overline{\mathrm{EBA}}$ to $\mathrm{An}, \overline{\mathrm{EAB}}$ to Bn	see Figure 7	1.9	3.4	4.1	ns
tpzL	output enable time to LOW-level					
	$\overline{\mathrm{OEBA}}$ to An, $\overline{\mathrm{OEAB}}$ to Bn	see Figure 8	2.9	4.2	5.2	ns
	$\overline{\mathrm{EBA}}$ to $\mathrm{An}, \overline{\mathrm{EAB}}$ to Bn	see Figure 8	3.1	4.6	5.5	ns
939775014756			\bigcirc Koninklike Philips Electronics N.V. 2005. All rights reserved.			
Product data sheet		Rev. 03 - 20 April 2005				

Table 8: Dynamic characteristics ...continued GND = 0 V; for test circuit see Figure 10.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$t_{\text {PHZ }}$	output disable time from HIGH-level					
	$\overline{O E B A}$ to An, $\overline{O E A B}$ to Bn	see Figure 7	2.0	3.3	4.3	ns
	$\overline{\mathrm{EBA}}$ to $\mathrm{An}, \overline{\mathrm{EAB}}$ to Bn	see Figure 7	2.1	3.4	4.5	ns
$t_{\text {PLZ }}$	output disable time from LOW-level					
	$\overline{\mathrm{OEBA}}$ to An, $\overline{\mathrm{OEAB}}$ to Bn	see Figure 8	2.0	2.8	5.8	ns
	$\overline{E B A}$ to $\mathrm{An}, \overline{\mathrm{EAB}}$ to Bn	see Figure 8	2.0	3.0	6.2	ns
$\mathrm{t}_{\text {su(}}$ (H)	set-up time HIGH					
	An to $\overline{\text { LEAB }}$, Bn to $\overline{\text { LEBA }}$	see Figure 9	3.0	1.5	-	ns
	An to EAB, Bn to EBA	see Figure 9	3.0	1.5	-	ns
$\mathrm{t}_{\text {su(L) }}$	set-up time LOW					
	An to $\overline{\text { LEAB }}, \mathrm{Bn}$ to $\overline{\mathrm{LEBA}}$	see Figure 9	3.0	0.6	-	ns
	An to $\overline{\mathrm{EAB}}, \mathrm{Bn}$ to $\overline{\mathrm{EBA}}$	see Figure 9	3.0	0.6	-	ns
$\mathrm{th}_{\text {(H) }}$	hold time HIGH					
	An to $\overline{\text { LEAB }}, \mathrm{Bn}$ to $\overline{\text { LEBA }}$	see Figure 9	0.5	-0.3	-	ns
	An to EAB, Bn to EBA	see Figure 9	0.5	-0.2	-	ns
$t_{\text {h(L) }}$	hold time LOW					
	An to LEAB, Bn to LEBA	see Figure 9	0.5	-1.3	-	ns
	An to EAB, Bn to EBA	see Figure 9	0.5	-1.3	-	ns
t_{wL}	pulse width LOW $\overline{\text { LEAB }}$ and $\overline{\text { LEBA }}$	see Figure 9	3.5	1.8	-	ns
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$						
$t_{\text {PLH }}$	propagation delay					
	An to Bn, Bn to An	see Figure 5	1.7	-	4.7	ns
	$\overline{\text { LEBA }}$ to $\mathrm{An}, \overline{\mathrm{LEAB}}$ to Bn	see Figure 5 and $\underline{6}$	2.1	-	5.2	ns
tPHL	propagation delay					
	An to Bn, Bn to An	see Figure 5	2.4	-	5.2	ns
	$\overline{\text { LEBA }}$ to $\mathrm{An}, \overline{\text { LEAB }}$ to Bn	see Figure 5 and $\underline{6}$	3.0	-	6.2	ns
$\mathrm{t}_{\text {PZH }}$	output enable time to HIGH-level					
	$\overline{\mathrm{OEBA}}$ to An, $\overline{\mathrm{OEAB}}$ to Bn	see Figure 7	1.8	-	4.7	ns
	$\overline{\mathrm{EBA}}$ to $\mathrm{An}, \overline{\mathrm{EAB}}$ to Bn	see Figure 7	1.9	-	5.0	ns
$t_{\text {PZL }}$	output enable time to LOW-level					
	$\overline{\text { OEBA }}$ to An, $\overline{O E A B}$ to Bn	see Figure 8	2.9	-	6.1	ns
	$\overline{E B A}$ to An, EAB to Bn	see Figure 8	3.1	-	6.5	ns
$\mathrm{t}_{\text {PHZ }}$	output disable time from HIGH-level					
	$\overline{O E B A}$ to An, $\overline{O E A B}$ to Bn	see Figure 7	2.0	-	4.9	ns
	$\overline{\mathrm{EBA}}$ to $\mathrm{An}, \overline{\mathrm{EAB}}$ to Bn	see Figure 7	2.1	-	5.2	ns
tpLZ	output disable time from LOW-level					
	$\overline{\mathrm{OEBA}}$ to $\mathrm{An}, \overline{\mathrm{OEAB}}$ to Bn	see Figure 8	2.0	-	6.3	ns
	$\overline{\mathrm{EBA}}$ to $\mathrm{An}, \overline{\mathrm{EAB}}$ to Bn	see Figure 8	2.0	-	6.7	ns

Table 8: Dynamic characteristics ...continued
GND = 0 V; for test circuit see Figure 10.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\mathrm{su}(\mathrm{H})}$	set-up time HIGH					
	An to $\overline{\text { LEAB }}, \mathrm{Bn}$ to $\overline{\text { LEBA }}$	see Figure 9	3.0	-	-	ns
	An to EAB, Bn to EBA	see Figure 9	3.0	-	-	ns
$t_{\text {su(L) }}$	set-up time LOW					
	An to $\overline{\text { LEAB }}$, Bn to $\overline{\text { LEBA }}$	see Figure 9	3.0	-	-	ns
	An to EAB, Bn to EBA	see Figure 9	3.0	-	-	ns
$\mathrm{th}_{\mathrm{H}}(\mathrm{H})$	hold time HIGH					
	An to $\overline{\text { LEAB }}$, Bn to $\overline{\text { LEBA }}$	see Figure 9	0.5	-	-	ns
	An to $\overline{E A B}, \mathrm{Bn}$ to EBA	see Figure 9	0.5	-	-	ns
$t_{\text {n }(L)}$	hold time LOW					
	An to $\overline{\text { LEAB }}, \mathrm{Bn}$ to $\overline{\text { LEBA }}$	see Figure 9	0.5	-	-	ns
	An to $\overline{\mathrm{EAB}}, \mathrm{Bn}$ to $\overline{\mathrm{EBA}}$	see Figure 9	0.5	-	-	ns
t_{wL}	pulse width LOW $\overline{\mathrm{LEAB}}$ and $\overline{\mathrm{LEBA}}$	see Figure 9	3.5	-	-	ns

12. Waveforms

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
V_{OL} and V_{OH} are typical voltage output drop that occur with the output load.
Fig 5. Propagation delay for inverting output

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
V_{OL} and V_{OH} are typical voltage output drop that occur with the output load.
Fig 6. Propagation delay for non-inverting output
$V_{M}=1.5 \mathrm{~V}$.
V_{OL} and V_{OH} are typical voltage output drop that occur with the output load.
Fig 7. 3-state output enable time to HIGH-level and output disable time from HIGH-level

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
V_{OL} and V_{OH} are typical voltage output drop that occur with the output load.
Fig 8. 3-state output enable time to LOW-level and output disable time from LOW-level

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig 9. Data set-up and hold times and latch enable pulse width

13. Test information

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
a. Input pulse definition

Test data is given in Table 9.
Definitions test circuit:
$R_{L}=$ Load resistor.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to output impedance Z_{0} of the pulse generator.
b. Test circuit for 3-state outputs

Fig 10. Load circuitry for switching times

Table 9: Test data

Input								
$\mathbf{V}_{\mathbf{I}}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{t}_{\mathbf{W}}$	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$	$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{t}_{\mathbf{E X H}}$		
3.0 V	1 MHz	500 ns	2.5 ns	50 pF	500Ω	open	$\mathbf{t}_{\mathbf{P L Z}}, \mathbf{t}_{\mathbf{P Z L}}$	$\mathbf{t}_{\mathbf{P L H}}, \mathbf{t}_{\mathbf{P H L}}$

14. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & \hline 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.1	$\begin{aligned} & \hline 0.012 \\ & 0.004 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.013 \\ 0.009 \end{array}$	$\begin{aligned} & \hline 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & \hline 0.30 \\ & 0.29 \end{aligned}$	0.05	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & \hline 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			$-99-12-27$
SOT137-1	$075 E 05$	MS-013			$-03-19$	

Fig 11. Package outline SOT137-1 (SO24)
939775014756
DIMENSIONS (mm dimensions are derived from the original inch dimensions)

UNIT	A max.	A_{1} min.	$\begin{gathered} \mathbf{A}_{2} \\ \max . \end{gathered}$	b	b_{1}	C	$D^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	$\mathbf{M}_{\mathbf{H}}$	W	$\mathbf{Z}^{(1)}$
mm	4.7	0.38	3.94	$\begin{aligned} & 1.63 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 31.9 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 6.73 \\ & 6.25 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.51 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.13 \\ & 7.62 \end{aligned}$	$\begin{array}{r} 10.03 \\ 7.62 \end{array}$	0.25	2.05
inches	0.185	0.015	0.155	$\begin{aligned} & 0.064 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.022 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.010 \end{aligned}$	$\begin{aligned} & 1.256 \\ & 1.240 \end{aligned}$	$\begin{aligned} & 0.265 \\ & 0.246 \end{aligned}$	0.1	0.3	$\begin{aligned} & 0.138 \\ & 0.120 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.395 \\ & 0.300 \end{aligned}$	0.01	0.081

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION
	IEC	JEDEC	JEITA		
SOT222-1		MSSUE DATE			

Fig 12. Package outline SOT222-1 (DIP24)
939775014756

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.8 \\ & 0.4 \end{aligned}$	8° 0°

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			-
SOT340-1		MO-150			$-99-12-27$	

Fig 13. Package outline SOT340-1 (SSOP24)
939775014756

DIMENSIONS (mm are the original dimensions)

| UNIT | \mathbf{A} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{m a x}$. | | $\mathbf{A}_{\mathbf{1}} \quad \mathbf{A}_{\mathbf{2}} \quad \mathbf{A}_{\mathbf{3}} \quad \mathbf{b}_{\mathbf{p}} \quad \mathbf{c}$

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT355-1		MO-153			-	

Fig 14. Package outline SOT355-1 (TSSOP24)
939775014756

15. Revision history

Table 10: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74ABT544_3	20050420	Product data sheet	-	939775014756	74ABT544_2
Modifications:	- The format of this data sheet has been redesigned to comply with the new presentation and information standard of Philips Semiconductors. - Section 2; changed latch-up protection to JESD78. - Table 1; changed typical values for propagation delay. - Table 8; changed values for propagation delay, output enable time and output disable time.				
74ABT544_2	20021118	Product specification	-	939775010752	74ABT544
74ABT544	19930701	Product specification	-		-

16. Data sheet status

Level	Data sheet status $\underline{[1]}$	Product status $\underline{[2][3]}$ [3]	Definition I
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.	
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

17. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

18. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

19. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

20. Contents

1 General description 1
2 Features 1
3 Quick reference data 2
4 Ordering information 2
5 Functional diagram 2
6 Pinning information 4
6.1 Pinning 4
6.2 Pin description 4
7 Functional description 5
7.1 Function table 5
8 Limiting values 6
9 Recommended operating conditions. 6
10 Static characteristics 7
11 Dynamic characteristics 8
12 Waveforms 10
13 Test information 12
14 Package outline 13
15 Revision history 17
16 Data sheet status 18
17 Definitions 18
18 Disclaimers. 18
19 Contact information 18
© Koninklijke Philips Electronics N.V. 2005
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

[^0]: - Combines 74ABT640 and 74ABT373 type functions in one device
 - 8-bit octal transceiver with D-type latch
 - Back-to-back registers for storage
 - Separate controls for data flow in each direction
 - Output capability: +64 mA and -32 mA
 - Live insertion and extraction permitted
 - Power-up 3-state
 - Power-up reset
 - Latch-up protection:
 - JESD78: exceeds 500 mA
 - ESD protection:
 - MIL STD 883 method 3015: exceeds 2000 V
 - Machine model: exceeds 200 V

