Features

- 25Ω series resistors in the port A and B outputs eliminate the need for external resistors when driving MOS inputs such as DRAM arrays
■ 9-bit data ports for systems carrying parity bits
- Readback capability for system self checks.
- Independent control lines for maximum flexibility

■ Guaranteed multiple output switching and 250 pF load delays

- Outputs optimized for dynamic bus drive capability
- PINV parity control facilitates system diagnostics

■ 74FR900 option available without output series resistors
Ordering Code:

Order Number	Package Number	Package Description
74FR25900SSC	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300 Wide

Logic Symbol

Pin Description

Pin Names	Description
$\overline{\mathrm{LExx}}$	Latch Enable Inputs
$\overline{\mathrm{OE}}_{\mathrm{x}}$	Output Enable Inputs
PINV	Parity Invert Input
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Select Inputs
$\mathrm{A}_{0}-\mathrm{A}_{8}$	Port A Inputs or 3-STATE Outputs
$\mathrm{B}_{0}-\mathrm{B}_{8}$	Port B Inputs or 3-STATE Outputs
$\mathrm{C}_{0}-\mathrm{C}_{8}$	Port C Inputs or 3-STATE Outputs

[^0]

Schematic of A and B Port Outputs

Absolute Maximum Ratings(Note 2)
 Storage Temperature
 Ambient Temperature under Bias
 Junction Temperature under Bias
 V_{CC} Pin Potential to Ground Pin
 Input Voltage (Note 3)
 Input Current (Note 3)

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output
3-STATE Output
Current Applied to Output
in LOW State (Max) twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
ESD Last Passing Voltage (Min)
-0.5 V to V_{CC} -0.5 V to +5.5 V

Recommended Operating Conditions

Free Air Ambient Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{V}_{\text {cc }}$	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	2.4			V	Min	$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\right)$
		2.0			V	Min	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\right)$
$\overline{\mathrm{V} \text { OL }}$	Output LOW Voltage			0.50	V	Min	$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
				0.75	V	Min	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
				0.50	V	Min	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{C}_{\mathrm{n}}\right)$
I_{H}	Input HIGH Current			5	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ (Control Inputs)
$\mathrm{l}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ (Control Inputs)
$\mathrm{I}_{\text {BVIT }}$	Input High Current Breakdown Test (I/O)			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\right)$
ILI	Input Low Current			-150	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ (Control Inputs)
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}, \\ & \text { All Other Pins Grounded } \end{aligned}$
1 OD	Output Circuit Leakage Test			3.75	V	0.0	$\mathrm{V}_{\mathrm{IOD}}=150 \mathrm{mV},$ All Other Pins Grounded
$\overline{I_{\text {H }}+I_{\text {OZH }}}$	Output Leakage Current			25	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\right)$
$\mathrm{IIIL}^{+} \mathrm{I}_{\text {OZL }}$	Output Leakage Current			-150	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\right)$
los	Output Short Circuit Current	-100		-225	mA	Max	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\right)$
$l_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\right)$
lzz	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}\right)$
${ }^{\text {ICCH }}$	Power Supply Current		115	150	mA	Max	All Outputs HIGH (Note 4)
$\mathrm{I}_{\text {CLL }}$	Power Supply Current		170	200	mA	Max	All Outputs LOW (Note 4)
$\mathrm{I}_{\text {ccz }}$	Power Supply Current		147	175	mA	Max	Outputs in 3-STATE

Note 4: 2 ports active only

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\begin{array}{\|l} \hline \mathrm{t}_{\text {PLH }} \\ \mathrm{t}_{\mathrm{PH}} \end{array}$	Propagation Delay A_{n} or B_{n} to C_{n} C_{n} to A_{n} or B_{n}	2.0	4.7	7.5	2.0	7.5	ns
$\begin{array}{\|l} \hline \begin{array}{l} \text { tPLH } \end{array} \\ \mathrm{t}_{\text {PHL }} \end{array}$	Propagation Delay C_{8} to A_{8} or B_{8} (PINV HIGH)	2.5	4.8	7.5	2.5	7.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\text {PH }} \end{aligned}$	Propagation Delay $A_{n} \text { to } B_{n}, B_{n} \text { to } A_{n}$	4.5	7.0	11.5	4.5	11.5	ns
$\begin{array}{\|l\|} \hline \mathrm{t}_{\text {PLH }} \\ \mathrm{t}_{\text {PHL }} \end{array}$	$\begin{aligned} & \text { Propagation Delay } \\ & \frac{\text { LEAC to } C_{n}, \overline{L E B C} \text { to } C_{n}}{} \end{aligned}$	4.5	6.8	10.0	4.5	10.0	ns
$\begin{array}{\|l} \hline \begin{array}{l} \text { PLLH } \end{array} \\ \mathrm{t}_{\mathrm{PH}} \end{array}$	$\begin{aligned} & \text { Propagation Delay } \\ & \frac{\text { LECA to } A_{n},}{}, \underline{\text { LECB }} \text { to } B_{n} \end{aligned}$	3.5	6.0	10.0	3.5	10.0	ns
$\begin{array}{\|l} \hline \begin{array}{l} \text { PLLH } \end{array} \\ \mathrm{t}_{\mathrm{PH}} \end{array}$	Propagation Delay $\mathrm{S}_{0} \text { to } \mathrm{C}_{\mathrm{n}}$	3.0	6.0	10.0	3.0	10.0	ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PH }} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & S_{1} \text { to } A_{n} \text { or } B_{n} \end{aligned}$	4.0	7.0	11.5	4.0	11.5	ns
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PH}} \end{array}$	Propagation Delay PINV to A_{8} or B_{8}	2.5	5.5	9.5	2.5	9.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output Enable Time C_{n}	1.5	4.0	6.5	1.5	6.5	ns
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{PHZ}} \\ \mathrm{t}_{\mathrm{PLLZ}} \end{array}$	Output Disable Time C_{n}	1.5	4.0	6.0	1.5	6.0	ns
$\begin{array}{\|l} \hline \mathrm{t}_{\text {PZH }} \\ \mathrm{t}_{\text {PZL }} \end{array}$	Output Enable Time A_{n}, B_{n}	1.5	6.0	8.0	1.5	8.0	ns
$\begin{aligned} & \hline \text { tPHZ } \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time A_{n}, B_{n}	1.5	5.0	7.0	1.5	7.0	ns

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW A_{n} to $\overline{\text { LEAC }}, B_{n}$ to $\overline{\text { LEBC }}$	4.5	2.5		4.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW A_{n} to $\overline{\text { LEAC }}, B_{n}$ to $\overline{\text { LEBC }}$	1.0	-1.5		1.0		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW C_{n} to $\overline{\mathrm{LECA}}$ or $\overline{\mathrm{LECB}}$	3.0	1.0		3.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW C_{n} to $\overline{\mathrm{LECA}}$ or $\overline{\mathrm{LECB}}$	1.0	-1.0		1.0		ns
${ }^{\text {t }}$ (H$)$	$\overline{\text { LE Pulse Width LOW }}$	8.0	4.0		8.0		ns

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \text { Nine Outputs } \\ \text { Switching } \\ \text { (Note 5) } \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ \text { (Note 6) } \end{gathered}$		Units
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay A_{n} or B_{n} to C_{n} C_{n} to A_{n} or B_{n}	2.0	11.5	4.0	12.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay C_{8} to A_{8} or B_{8} (PINV HIGH)			5.5	13.0	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay A_{n} to B_{n}, B_{n} to A_{n}	4.5	16.0	6.0	16.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation Delay $\overline{\text { LEAC }}$ to $C_{n}, \overline{\text { LEBC }}$ to C_{n}	4.5	13.0	5.5	13.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{\text { LECA }} \text { to } A_{n}, \overline{\text { LECB }} \text { to } B_{n} \end{aligned}$	3.5	11.5	5.5	14.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation Delay S_{0} to C_{n}	3.0	11.0	3.0	14.0	ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay $S_{1} \text { to } A_{n} \text { or } B_{n}$	4.0	16.5	6.5	16.5	ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay PINV to A_{8} or B_{8}			4.5	14.5	ns
$\begin{aligned} & \hline t_{\text {PZH }} \\ & t_{\text {PZL }} \end{aligned}$	Output Enable Time C_{n}	1.5	8.0			ns
$\begin{aligned} & \hline t_{\text {PHZ }} \\ & t_{\text {PLZ }} \end{aligned}$	Output Disable Time C_{n}	1.5	6.0			ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output Enable Time A_{n}, B_{n}	1.5	8.0			ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PHZ }} \\ & \mathrm{t}_{\text {PLZ }} \end{aligned}$	Output Disable Time A_{n}, B_{n}	1.5	7.0			ns
Note 5: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase, i.e., all LOW-to-HIGH, HIGH-to-LOW, 3-STATE-to-HIGH, etc. Note 6: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors standard AC load. This specification pertains to single output switching only.						

Physical Dimensions inches (millimeters) unless otherwise noted

48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300 Wide Package Number MS48A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

[^0]: Functional Description
 The 74FR25900 allows 9-bit data to be transferred from any of three 9-bit I/O ports to either of the two remaining I/O ports. The device employs latches in all paths for either transparent or synchronous operation. Readback capability from any port to itself is also possible.
 Data transfer within the 74FR25900 is controlled through use of the select (S_{0} and S_{1}) and output-enable $\left(\overline{\mathrm{OE}}_{\mathrm{A}}, \mathrm{OE}_{\mathrm{B}}\right.$ and $\overline{\mathrm{OE}}_{\mathrm{C}}$) inputs as described in Table 1. Additional control is available by use of the latch-enable inputs ($\overline{\mathrm{LEAC}}, \overline{\mathrm{LECA}}$, $\overline{\mathrm{LEBC}}, \overline{\mathrm{LECB}}$) allowing either synchronous or transparent transfers (see Table 2). Table 1 indicates several readback conditions. By latching data on a given port and initiating the readback control configuration, previous data may be read for system verification or diagnostics. This mode may be useful in implementing system diagnostics.
 Data at the port to be readback must be latched prior to enabling the outputs on that port. If this is not done, a closed data loop will result causing possible data integrity problems. Note that the A and B Ports allow readback without affecting any other port. C Port, however, requires interruption of either A or B Ports to complete its readback path. PINV controls inversion of the C_{8} bit. A LOW on PINV allows C_{8} data to pass unaltered. A HIGH causes inversion of the data. See Table 3. This feature allows forcing of parity errors for use in system diagnostics. This is particularly helpful in 486 processor designs as the 486 does not provide odd/even parity selection internally.

