18–23 GHz GaAs MMIC Power Amplifier AA022P1-00 #### **Features** - Single Bias Supply Operation (6 V) - 14 dB Typical Small Signal Gain - 24.5 dBm Typical P_{1 dB} Output Power at 23 GHz - 0.25 µm Ti/Pd/Au Gates - 100% On-Wafer RF and DC Testing - 100% Visual Inspection to MIL-STD-883 MT 2010 #### **Description** Alpha's two-stage balanced K band GaAs MMIC power amplifier has a typical P $_{1\ dB}$ of 24.5 dBm with 13 dB associated gain and 11% power added efficiency at 23 GHz. The chip uses Alpha's proven 0.25 μm MESFET technology, and is based upon MBE layers and electron beam lithography for the highest uniformity and repeatability. The FETs employ surface passivation to ensure a rugged reliable part with through-substrate via holes and gold-based backside metallization to facilitate a conductive epoxy die attach process. All chips are screened for small signal S-parameters and power characteristics prior to shipment for guaranteed performance. A broad range of applications exist in both the high reliability and commercial areas where high power and gain are required. ## **Chip Outline** Dimensions indicated in mm. All DC (V) pads are $0.1 \times 0.1 \text{ mm}$ and RF In, Out pads are 0.07 mm wide. Chip thickness = 0.1 mm. # **Absolute Maximum Ratings** | Characteristic | Value | | |---|-------------------|--| | Operating Temperature (T _C) | -55°C to +90°C | | | Storage Temperature (T _{ST}) | -65°C to +150°C | | | Bias Voltage (V _D) | 7 V _{DC} | | | Power In (P _{IN}) | 22 dBm | | | Junction Temperature (T _J) | 175°C | | # Electrical Specifications at 25° C ($V_{DS} = 6$ V) | Parameter | Condition | Symbol | Min. | Typ. ² | Max. | Unit | |---------------------------------------|---------------|-------------------|------|-------------------|------|------| | Drain Current (at Saturation) | | I _{DS} | | 300 | 390 | mA | | Small Signal Gain | F = 18–23 GHz | G | 12 | 14 | | dB | | Input Return Loss | F = 18–23 GHz | RL | | -15 | -10 | dB | | Output Return Loss | F = 18–23 GHz | RLO | | -17 | -10 | dB | | Output Power at 1 dB Gain Compression | F = 23 GHz | P _{1 dB} | 22 | 24.5 | | dBm | | Saturated Output Power | F = 23 GHz | P _{SAT} | 24 | 25.5 | | dBm | | Gain at Saturation | F = 23 GHz | G _{SAT} | | 13 | | dB | | Thermal Resistance ¹ | | Θ _{JC} | | 39 | | °C/W | ^{1.} Calculated value based on measurement of discrete FET. Typical represents the median parameter value across the specified frequency range for the median chip. # **Typical Performance Data** Typical Small Signal Performance S-Parameters (V_{DS} = 6 V) #### 26 PIN 25 16 24 12 23 Pout (dBm) 22 10 21 20 8 19 18 17 16 21 22 23 25 18 24 Frequency (GHz) Output Characteristics as a Function of Frequency and Input Drive Level (V_{DS} = 6 V) # **Bias Arrangement** For biasing on, adjust V_{DS} from zero to the desired value (6 V recommended). For biasing off, reverse the biasing on procedure. ### **Circuit Schematic** Detail A