ANALOG 2Ω Max On Resistance, DEVICES

FEATURES

2Ω Max On Resistance
0.5Ω Max On Resistance Flatness
200 mA continuous current per channel
33 V supply range
Fully specified at $\mathbf{+ 1 2} \mathrm{V}, \pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$
No V_{L} supply required
3 V logic-compatible inputs
Rail-to-rail operation
16-lead TSSOP and 16-lead LFCSP
Typical power consumption: <0.03 $\mu \mathrm{W}$

APPLICATIONS

Automatic test equipment
Data aquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Video signal routing
Communication systems
Relay Replacement

GENERAL DESCRIPTION

The ADG1411/ADG1412/ADG1413 are monolithic complementary metal-oxide semiconductor (CMOS) devices containing four independently selectable switches designed on an i CMOS process. i CMOS (industrial CMOS) is a modular manufacturing process combining high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, i CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals.

SWITCHES SHOWN FOR A LOGIC "1" INPUT
Figure 1.
iCMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and batterypowered instruments.

The ADG1411/ADG1412/ADG1413 contain four independent single-pole/single-throw (SPST) switches. The ADG1411 and ADG1412 differ only in that the digital control logic is inverted. The ADG1411 switches are turned on with Logic 0 on the appropriate control input, while Logic 1 is required for the ADG1412. The ADG1413 has two switches with digital control logic similar to that of the ADG1411; the logic is inverted on the other two switches. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The ADG1413 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

1. 2Ω Max On Resistance over temperature.
2. Minimum distortion
3. 3 V logic-compatible digital inputs: $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
4. No V_{L} logic power supply required.
5. Ultralow power dissipation: $<0.03 \mu \mathrm{~W}$.
6. 16-lead TSSOP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP packages.

TABLE OF CONTENTS

Specifications. 3
Dual Supply 3
Single Supply 6
Absolute Maximum Ratings 7
ESD Caution7
Pin Configurations and Function Descriptions 8
Terminology 9
Typical Performance Characteristics. 10
Test Circuits 13
Outline Dimensions 15
Ordering Guide 16

REVISION HISTORY

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On Resistance Flatness (Rflat(on)	1.5 0.1 0.1	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$V_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; Figure } 20 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{Is}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=-5 \mathrm{~V} / 0 \mathrm{~V} /+5 \mathrm{~V} ; \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \end{aligned}$	± 2.5 ± 2.5 ± 5	± 5 ± 5 ± 5	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; Figure } 22 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, IINL or $\mathrm{l}_{\mathrm{INH}}$ Digital Input Capacitance, CIN_{1}	$\begin{aligned} & 0.005 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 2.5 \\ & \pm 0.5 \end{aligned}$	\vee min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, t_{D} (ADG1413 only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	105 125 40 50 25 50 50 60 0.015 200 35 35 150		$\begin{aligned} & 185 \\ & 60 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=10 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=110 \Omega, 5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 28 \\ & \mathrm{Vs}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{Vs}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS ID IDD	$\begin{aligned} & 0.001 \\ & 220 \end{aligned}$		1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max μA typ	$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V}$ Digital inputs $=0 \mathrm{~V}$ or V_{DD} Digital inputs $=5 \mathrm{~V}$

	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	0.001		320 1. $\pm 4.5 / \pm 16.5$	$\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/max	Digital inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$ or V_{DD} Gnd $=0 \mathrm{~V}$

[^0]
SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

	Y Version			Unit	Test Conditions/Comments
	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On Resistance Flatness (Rflat(on))	$\begin{aligned} & 2 \\ & 3 \\ & 0.1 \\ & \\ & 0.1 \\ & \hline \end{aligned}$	4	0 V to V_{DD}	V Ω typ Ω max Ω typ Ω max Ω typ	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; Figure } 20 \\ & \mathrm{~V}_{\mathrm{DD}}=+10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=-5 \mathrm{~V} / 0 \mathrm{~V} /+5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, Id, Is (On)	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \end{aligned}$	± 2.5 ± 2.5 ± 5	$\begin{gathered} \pm 5 \\ \pm 5 \\ \pm 5 \end{gathered}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; Figure } 22 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, $I_{\text {inLor }} I_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{Cl}_{\mathrm{IN}}$	$\begin{aligned} & 0.001 \\ & 3 \\ & \hline \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.5 \end{gathered}$	V min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, t_{D} (ADG1413 only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	120 155 45 65 50 50 50 60 0.015 200 35 35 150		225 85 10	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=8 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=110 \Omega, 5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 28 \\ & \mathrm{Vs}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{Vs}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{Vs}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS IDD ldo VD	0.001 220		$\begin{aligned} & 1 \\ & 320 \\ & 5 / 16.5 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V} D \mathrm{D} \\ & \text { Digital inputs }=5 \mathrm{~V} \\ & \text { Gnd }=0 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V} \end{aligned}$

[^1]
DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On Resistance Flatness (Rflation)	0.1 0.1		0 V to V ${ }_{\text {dD }}$	V Ω typ Ω max Ω typ Ω max Ω typ	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} ; \text { Figure } 20 \\ & \mathrm{~V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=-3 \mathrm{~V} / 0 \mathrm{~V} /+3 \mathrm{~V} ; \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 5 \end{aligned}$	± 5 ± 5 ± 5		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {; Figure } 22 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current, Inlor InN Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.001 \\ & 3 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.5 \end{gathered}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, to (ADG1413 only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	120 155 45 65 50 10 50 60 0.015 200 35 35 150		225 85 10	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=8 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text { Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=110 \Omega, 5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 28 \\ & \mathrm{~V}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V} \mathrm{~s}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{Vs}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS IdD Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	0.001 0.001		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \pm 4.5 / \pm 16.5 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max μA typ $\mu \mathrm{A}$ max V min/max	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{Vss}=-5.5 \mathrm{~V}$ Digital inputs $=0 \mathrm{~V}$ or V_{DD} Digital inputs $=5 \mathrm{~V}$ Gnd $=0 \mathrm{~V}$

[^2]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Rating
$V_{D D}$ to $V_{S S}$	35 V
V $_{\text {DD }}$ to GND	-0.3 V to +25 V
$\mathrm{~V}_{S S}$ to GND	+0.3 V to -25 V
Analog Inputs 1	$\mathrm{~V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{VDD}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	$\mathrm{GND}-0.3 \mathrm{~V}$ to VD +0.3 V or
	30 mA, whichever occurs first
Peak Current, S or D	300 mA (pulsed at $1 \mathrm{~ms}, 10 \%$
duty cycle max)	
Continuous Current, S or D	200 mA
Operating Temperature Range	
\quad Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
16-Lead TSSOP, θ_{JA} Thermal	$150.4^{\circ} \mathrm{C} / \mathrm{W}$
\quad Impedance	
16-Lead LFCSP, θ_{JA} Thermal	$72.7^{\circ} \mathrm{C} / \mathrm{W}$
\quad Impedance	
Reflow Soldering Peak	$260^{\circ} \mathrm{C}$
Temperature, Pb free	

[^3]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

EXPOSED PAD TIEDTO SUBSTRATE, Vss NC = NO CONNECT

Figure 3. LFCSP Pin Configuration

Figure 2. TSSOP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	15	IN1	Logic Control Input.
2	16	D1	Drain Terminal. Can be an input or output.
3	1	S1	Source Terminal. Can be an input or output.
4	2	VSS	Most Negative Power Supply Potential.
5	3	GND	Ground (0 V) Reference.
6	4	S4	Source Terminal. Can be an input or output.
7	5	D4	Drain Terminal. Can be an input or output.
8	6	IN4	Logic Control Input.
9	7	IN3	Logic Control Input.
10	8	D3	Drain Terminal. Can be an input or output.
11	9	S3	Source Terminal. Can be an input or output.
12	10	NC	No Connection.
13	11	VDD	Most Positive Power Supply Potential.
14	12	S2	Source Terminal. Can be an input or output.
15	13	D2	Drain Terminal. Can be an input or output.
16	14	IN2	Logic Control Input.

Table 6. ADG1411/ADG1412 Truth Table

ADG1411 INx	ADG1412 INx	Switch Condition
0	1	On
1	0	Off

Table 7. ADG1413 Truth Table

Logic - INx	Switch 1, 4	Switch 2, 3
0	Off	On
1	On	Off

TERMINOLOGY

$I_{\text {DD }}$

The positive supply current.
Iss
The negative supply current.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
The analog voltage on Terminals D and S.
Ron
The ohmic resistance between D and S .
$\mathrm{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

I_{s} (Off)

The source leakage current with the switch off.
I_{D} (Off)
The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$V_{\text {InH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
The input current of the digital input.
C_{s} (Off)
The off switch source capacitance, measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)

The on switch capacitance, measured with reference to ground.
Cin
The digital input capacitance.
ton
The delay between applying the digital control input and the output switching on. See Figure 23.
toff
The delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 8. Leakage Currents as a Function of Temperature, Dual Supply

Figure 9. Leakage Currents as a Function of Temperature, Single Supply

Figure 10. Logic Threshold Voltage vs. Supply Voltage

Figure 11. IDD vs. Logic Level

Figure 12. Charge Injection vs. Source Voltage

Figure 13. $T_{\text {o }} / T_{\text {off }}$ Times vs. Temperature

Figure 14. Off Isolation vs. Frequency

Figure 15. Crosstalk vs. Frequency

Figure 16. On Response vs. Frequency

Figure 19. $T H D+N$ vs. Frequency

Figure 18. Capacitance vs. Source Voltage, Single Supply

TEST CIRCUITS

Figure 20. On Resistance

Figure 21. Off Leakage

Figure 22. On Leakage

Figure 23. Switching Times

Figure 24. Break-Before-Make Time Delay

Figure 25. Charge Injection

Figure 26. Off Isolation

CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{v}_{\mathrm{S}}}$
Figure 27. Channel-to-Channel Crosstalk

Figure 28. Bandwidth

OUTLINE DIMENSIONS

Figure 29. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

Figure 30. 16-Lead Lead Frame Chip Scale Package [VQ_LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Thin Quad (CP-16-4)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1411YRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1411YRUZ-REEL¹	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1411YRUZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1411YCPZ-500RL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (VQ_LFCSP)	CP-16-4
ADG1411YCPZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (VQ_LFCSP)	CP-16-4
ADG1412YRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1412YRUZ-REEL¹	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1412YRUZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1412YCPZ-500RL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (VQ_LFCSP)	CP-16-4
ADG1412YCPZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (VQ_LFCSP)	CP-16-4
ADG1413YRUZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1413YRUZ-REEL¹	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1413YRUZ-REEL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1413YCPZ-500RL71	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (VQ_LFCSP)	CP-16-4
ADG1413YCPZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (VQ_LFCSP)	CP-16-4

[^4]NOTES

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^3]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

[^4]: ${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

