AdVANCED
Linear
DEVICES, INC.
ALD114813/ALD114913

QUAD/DUAL N-CHANNEL DEPLETION MODE EPAD® MATCHED PAIR MOSFET ARRAYS

GENERAL DESCRIPTION

ALD114813/ALD114913 are monolithic quad/dual N-Channel MOSFETS matched at the factory using ALD's proven EPAD CMOS technology. These devices are intended for low voltage, small signal applications. They are excellent functional replacements for normally-closed relay applications, as they are normally on (conducting) without any power applied, but could be turned off or modulated when system power supply is turned on. These MOSFETS have the unique characteristics of, when the gate is grounded, operating in the resistance mode for low drain voltage levels and in the current source mode for higher voltage levels and providing a constant drain current.

These MOSFETS are designed for exceptional device electrical characteristics matching. As these devices are on the same monolithic chip, they also exhibit excellent temperature tracking characteristics. They are versatile as design components for a broad range of analog applications, and they are basic building blocks for current sources, differential amplifier input stages, transmission gates, and multiplexer applications. Besides matched pair electrical characteristics, each individual MOSFET also exhibits well controlled parameters, enabling the user to depend on tight design limits. Even units from different batches and different date of manufacture have correspondingly well matched characteristics.

These depletion mode devices are built for minimum offset voltage and differential thermal response, and they are designed for switching and amplifying applications in single 1.5 V to $+/-5 \mathrm{~V}$ systems where low input bias current, low input capacitance and fast switching speed are desired. These devices exhibit well controlled turn-off and sub-threshold charactersitics and therefore can be used in designs that depend on sub-threshold characteristics.

The ALD114813/ALD114913 are suitable for use in precision applications which require very high current gain, beta, such as current mirrors and current sources. A sample calculation of the DC current gain at a drain current of 3 mA and gate input leakage current of $30 \mathrm{pA}=100,000,000$. It is recommended that the user, for most applications, connect V+ pin to the most positive voltage potential (or left open unused) and V - and N / C pins to the most negative voltage potential in the system. All other pins must have voltages within these voltage limits.

FEATURES

- Depletion mode (normally ON) without power
- Precision Gate Threshold Voltages: $-1.30 \mathrm{~V}+/-0.04 \mathrm{~V}$
- Nominal RDS(ON) @VGS=0.0V of $1.3 \mathrm{~K} \Omega$
- Matched MOSFET to MOSFET characteristics
- Tight lot to lot parametric control
- Low input capacitance
- VGS (th) match (Vos) -20 mV
- High input impedance $-10^{12} \Omega$ typical
- Positive, zero, and negative VGS(th) temperature coefficient
- DC current gain $>10^{8}$
- Low input and output leakage currents

ORDERING INFORMATION

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			

APPLICATIONS

- Functional replacement of Form B (NC) relay
- Zero power fail safe circuits
- Backup battery circuits
- Power failure detector
- Fail safe signal detector
- Source followers and buffers
- Precision current mirrors
- Precision current sources
- Capacitives probes
- Sensor interfaces
- Charge detectors
- Charge integrators
- Differential amplifier input stage
- High side switches
- Peak detectors
- Sample and Hold
- Alarm systems
- Current multipliers
- Analog switches
- Analog multiplexers
- Voltage comparators
- Level shifters

PIN CONFIGURATION

[^0]
ABSOLUTE MAXIMUM RATINGS

Drain-Source voltage, V_{DS}
Gate-Source voltage, V_{GS} \qquad 10.6 V
Power dissipation 500 mW
Operating temperature range PA, SA, PC, SC package \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature range \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature, 10 seconds. $+260^{\circ} \mathrm{C}$

OPERATING ELECTRICAL CHARACTERISTICS

$\mathrm{V}+=+5 \mathrm{~V}$ (or open) $\mathrm{V}-=-5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified
CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.

Parameter	Symbol	ALD114813/ALD114913			Unit	Test Conditions
		Min	Typ	Max		
Gate Threshold Voltage	VGS(th)	-1.34	-1.30	-1.26	V	$\begin{aligned} & \begin{array}{l} \mathrm{IDS}=1 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V} \end{array} \end{aligned}$
Offset Voltage $\mathrm{V}_{\mathrm{GS}}(\mathrm{th}) 1$ - $\mathrm{VGS}_{\mathrm{GS}}$ (th)2	Vos		7	20	mV	$\mathrm{IDS}=1 \mu \mathrm{~A}$
Offset Voltage Tempco	TCVos		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DS} 1}=\mathrm{V}_{\text {DS2 }}$
GateThreshold Voltage Tempco	TCVGS(th)		$\begin{array}{r} -1.7 \\ 0.0 \\ +1.6 \end{array}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & I D=1 \mu \mathrm{~A} \\ & I D=20 \mu \mathrm{~A}, \\ & I D=40 \mu \mathrm{~A} \end{aligned}$
On Drain Current	IDS (ON)		$\begin{array}{r} 12.0 \\ 3.0 \end{array}$		mA	$\begin{aligned} & \text { VGS }=+8.2 \mathrm{~V} \\ & \mathrm{VGS}_{\mathrm{G}}=+2.7 \mathrm{~V} \\ & \mathrm{~V} S=+5 \mathrm{~V} \end{aligned}$
Forward Transconductance	GFS		1.4		mmho	$\begin{aligned} & \mathrm{VGS}=+2.7 \mathrm{~V} \\ & \mathrm{~V} S=+7.7 \mathrm{~V} \end{aligned}$
Transconductance Mismatch	\triangle GFS		1.8		\%	
Output Conductance	Gos		68		$\mu \mathrm{mho}$	$\begin{aligned} & V_{G S}=+2.7 \mathrm{~V} \\ & V_{D S}=+7.7 \mathrm{~V} \end{aligned}$
Drain Source On Resistance	RDS (ON)		500		Ω	$\begin{aligned} & \mathrm{V} S=0.1 \mathrm{~V} \\ & \mathrm{VGS}=+2.7 \mathrm{~V} \end{aligned}$
Drain Source On Resistance	RDS (ON)		1.3		K Ω	$\begin{aligned} & \mathrm{V} \text { VS }=0.1 \mathrm{~V} \\ & \mathrm{VGS}=+0.0 \mathrm{~V} \end{aligned}$
Drain Source On Resistance Tolerance	$\triangle \mathrm{RDS}$ (ON)		7		\%	
Drain Source On Resistance Mismatch	$\triangle \mathrm{RDS}$ (ON)		0.5		\%	
Drain Source Breakdown Voltage	BVDSX	10			v	$\begin{aligned} & \mathrm{IDS}=1.0 \mu \mathrm{~A} \\ & \mathrm{VGS}=-2.3 \mathrm{~V} \end{aligned}$
Drain Source Leakage Current1	IDS (OFF)		10	$\begin{array}{r} 100 \\ 4 \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=+5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
Gate Leakage Current ${ }^{1}$	IGSS		3	$\begin{array}{r} 30 \\ 1 \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$	$\begin{aligned} & \mathrm{VDS}=0 \mathrm{~V} V G S=+10 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
Input Capacitance	CISS		2.5		pF	
Transfer Reverse Capacitance	CRSS		0.1		pF	
Turn-on Delay Time	ton		10		ns	$\mathrm{V}+=5 \mathrm{~V}$ RL $=5 \mathrm{~K} \Omega$
Turn-off Delay Time	toff		10		ns	$\mathrm{V}+=5 \mathrm{~V}$ R $\mathrm{L}=5 \mathrm{~K} \Omega$
Crosstalk			60		dB	$\mathrm{f}=100 \mathrm{KHz}$

Notes: ${ }^{1}$ Consists of junction leakage currents

[^0]: Rev 1.0-0506 ©2005 Advanced Linear Devices, Inc. 415 Tasman Drive, Sunnyvale, California 94089-1706 Tel: (408) $747-1155$ Fax: (408) $747-1286$

