

RoHS Compliant

AM42-0039 V3

2 Watt C-Band VSAT Power Amplifier 5.9 - 7.1 GHz

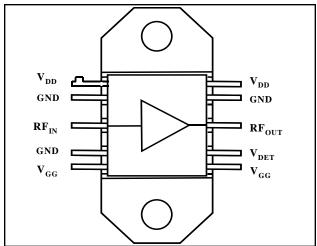
Features

- High Linear Gain: 33 dB Typical
- High Saturated Output Power: +33 dBm Typ.
- High Power Added Efficiency: 25% Typ.
- 50 Ω Input / Output Broadband Matched
- Integrated Output Power Detector
- Lead-Free Bolt Down Ceramic Package
- RoHS* Compliant and 260°C Reflow Compatible

Description

M/A-COM's AM42-0039 is a three stage MMIC power amplifier in a lead-free, bolt down ceramic package, allowing easy assembly. The AM42-0039 employs a fully matched chip with internally decoupled gate and drain bias networks. The AM42-0039 is designed to operate from a constant current drain supply or a constant voltage gate supply. By varying the bias conditions, the saturated output power performance of this device may be tailored for various applications.

The AM42-0039 is ideally suited for use as an output stage or a driver amplifier in VSAT systems. The AM42-0039 includes internal supply line bypassing in the package, minimizing the number of external components required.


M/A-COM's AM42-0039 is fabricated using a mature 0.5 micron MBE based GaAs MESFET process. The process features full passivation for increased performance and reliability. This product is 100% RF tested to ensure compliance to performance specifications.

Ordering Information

information.

Part Number	Package
AM42-0039	CR-15 Ceramic Bolt Down Package

Functional Schematic

Pin Configuration

Pin No.	Pin Name	Description		
1	V_{DD}	Drain Supply		
2	GND	DC and RF Ground		
3	RF _{IN}	RF Input		
4	GND	DC and RF Ground		
5	V_{GG}	Gate Supply		
6	V_{GG}	Gate Supply		
7	V _{DET}	Output Power Detector		
8	RF _{OUT}	RF Output		
9	GND	DC and RF Ground		
10	V_{DD}	Drain Supply		
Flange	GND	DC and RF Ground		

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

RoHS Compliant

2 Watt C-Band VSAT Power Amplifier 5.9 - 7.1 GHz

AM42-0039

Electrical Specifications: $T_A = +25$ °C, $V_{DD} = +8$ V, V_{GG} adjusted for $I_{DD} = 900$ mA, F = 5.9 - 7.1 GHz

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Linear Gain	P _{IN} = -10 dBm	dB	31	33	35
Input VSWR	P _{IN} = -10 dBm	Ratio	_	2.5:1	3.0:1
Output VSWR	P _{IN} = -10 dBm	Ratio	_	2.5:1	_
Output Power	P_{IN} = +3 dBm, Ids = 900 mA Typ.	dBm	31.7	33.0	_
Output Power vs. Frequency	P_{IN} = +3 dBm, Ids = 900 mA Typ. (5.9 to 6.4 GHz) P_{IN} = +3 dBm, Ids = 900 mA Typ. (6.4 to 7.1 GHz)	dB dB		±0.3 ±0.3	±0.75 ±0.75
Output Power vs. Temperature	$T_A = -40$ °C to +85°C, $P_{IN} = +7$ dBm	dB	_	±0.4	_
Drain Bias Current	P _{IN} = +3 dBm	mA	800	900	1000
Gate Bias Voltage	P_{IN} = +3 dBm, Ids = 900 mA Typ.	V	-2.0	-1.2	-0.4
Gate Bias Current	P_{IN} = +3 dBm, Ids = 900 mA Typ.	mA	_	10	20
Thermal Resistance (qJC)	25°C Heat Sink	°C/W	_	7.0	_
Second Harmonic	P_{IN} = +3 dBm, Ids = 900 mA Typ.	dBc	_	-35	_
Third Harmonic	P _{IN} = +3 dBm, Ids = 900 mA Typ.	dBc	_	-45	_
Detector Voltage	$P_{IN} = +3 \text{ dBm}$, $Ids = 900 \text{ mA Typ}$.	V	_	4.0	_

Absolute Maximum Ratings^{1,2,3}

Parameter	Absolute Maximum		
Input Power	+15 dBm		
Operating Voltages	V_{DD} = +10 volts; V_{GG} = -3 volts; V_{DD} - V_{GG} = 12 volts		
Ids	1200 mA		
Channel Temperature	+150 °C		
Operating Temperature	-40 °C to +80 °C		
Storage Temperature	-65 °C to +150 °C		

- 1. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 2. M/A-COM does not recommend sustained operation near these survivability limits.
- 3. Adequate heat sinking and grounding required on flange base.

Operating the AM42-0039

The AM42-0039 is static sensitive. Please handle with care. To operate the device, follow these steps.

- 1. Apply -2.0 Volts to V_{GG} .
- 2. Ramp V_{DD} to +8V.
- 3. Adjust V_{GG} to set quiescent drain current .
- 4. Apply RF.
- 5. Power down in reverse sequence. Turn gate voltage off last.

Handling Procedures

Please observe the following precautions to avoid damage:

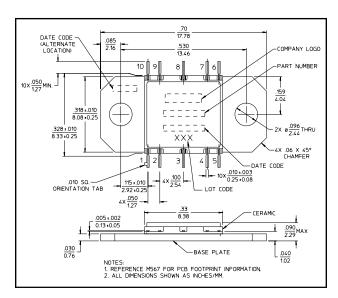
Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

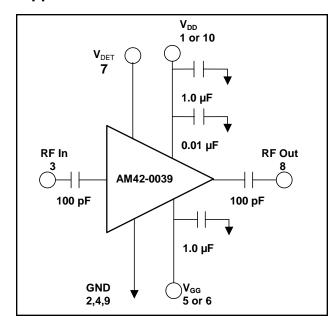
information.

North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300 Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298


RoHS Compliant

AM42-0039 V3


2 Watt C-Band VSAT Power Amplifier 5.9 - 7.1 GHz

Lead-Free CR-15[†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations.

Application Schematic 4,5,6

- 4. Apply -2 volts to pin 5 or 6 (V_{GG}), prior to applying +8 volts to pins 1 or 10 (V_{DD}). Adjust V_{GG} for typical drain current.
- 5. External DC blocking capacitors required on the RF ports.
- For optimum IP3 performance, V_{DD} bypass capacitors should be placed within 0.5 inches of the V_{DD} leads.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298