1.0 General Description

The AMIS-710625-A6 (PI625MC-A6) is a contact imaging sensor (CIS) module, which is composed of 13 AMIS-720639 (PI3039) sensor chips. The AMIS-720639 is a 600dpi solid-state line imaging array, also a product of AMI Semiconductor. This imaging device is fabricated using MOS imaging sensor technology for high-speed performance and high sensitivity. The AMIS-710625-A6 is suitable for scanning A6 size (104mm) documents with 23.62 dots per millimeter (dpm) resolution. Applications include ticket, check and card scanners, a variety of mark readers, and other automation equipment.

2.0 Key Features

- Light source, lens and sensor are integrated into a single module
- 23.62 dots/mm resolution, 104mm scanning length
- Up to $500 \mu s$ ec/line scanning speed, with 5MHz pixel rate
- Wide dynamic range
- Analog output
- Red 660nm LED light source
- Compact size
 [∞] 14mm x 19.5mm x 120mm
- Low power
- Light weight

3.0 Functional Description

The AMIS-710625-A6 imaging array consists of 13 sensors that are cascaded to provide 2496 photo-detectors with their associated multiplex switches, and a digital shift register that controls its sequential readout. Mounted in the module is one-to-one graded indexed micro lens array that focuses the scanned documents to image onto its sensing plane. The on-board amplifier processes the video signal to produce a sequential stream of video at the video output pin of the AMIS-710625-A6 module.

Illumination is by means of an integrated LED light source. All components are housed in a small plastic housing which has a cover glass that acts as the focal point for the object being scanned and protects the imaging array, micro lens assembly and LED light source from dust. I/O to the module is the 10-pin connector located on one end of the module.

The cross section of the AMIS-710625-A6 is shown in Figure 1 and its block diagram in Figure 2.

Data Sheet

AMIS-710625-A6: 600pdi CIS Module

Data Sheet

4.0 Connector Pin Out Designation

Connector is JAE part number 1L-Z-10P-S125L3-E.

Pin Number	Symbol	Names and Functions
1	Vout	Analog video output
2	Gnd	Ground; 0V
3	Vdd (+5V)	Positive power supply
4	Vn (-5V to -12V)	Negative power supply
5	Gnd	Ground; 0V
6	SP	Shift register start pulse
7	Gnd	Ground; 0V
8	CP	Sampling clock pulse
9	GLED	Ground for the light source; 0V
10	VLED	Supply for the light source

5.0 Maximum Ratings

Table 2: Maximum Ratings

Parameter	Symbols	Max. Rating	Units
Power supply voltage	Vdd	7	V
	ldd	50	mA
	Vn	-15	V
	In	10	mA
	VLED	5.5	V
	ILED	500	mA
Input clock pulse (high level)	Vih	Vdd – 0.5V	V
Input clock pulse (low level)	Vil	-0.5	V

Note: These are the maximum values and are not to be used in a prolonged condition.

6.0 Operating Environment

Parameter	Symbols	Max. Rating	Units
Operating temperature	Тор	0 to +50	°C
Operating humidity	Нор	+10 to +85	%
Storage temperature	Tstg	-25 to+75	°C
Storage humidity	Hstg	+5 to +95	%

7.0 Electro-Optical Characteristics

The tabled values are measured at 25°C

Table 4: Electro-Optical Characteristics at 25°C

Parameter	Symbol	Typical	Units	Note
Number of photo detectors		2496	Elements	
Pixel-to-pixel spacing		42.3	μm	
Line scanning rate ⁽¹⁾	Tint	500	μsec	@ 5.0MHz clock frequency
Clock frequency ⁽²⁾	fclk	5.0	MHz	
Bright output voltage (3)	Video output	1.0 +/-0.1	V	
Bright output non-uniformity (4)	Up	<+/-30	%	
Adjacent pixel non-uniformity ⁽⁵⁾	Uadj	<25	%	
Dark non-uniformity (6)	Ud	<100	mV	
Dark output voltage ⁽⁶⁾	Vd	<450	mV	
Modulation Transfer function (1)	MTF	>40	%	

Notes:

1. Tint: Line scanning rate or integration time; tint is determined by the interval of two SP.

2. fclk: main clock frequency.

3. Vpavg = $\sum Vp(n)/2496$; where n=1, 2, 3..., 2496.

- 4. Up = [(Vpmax Vpavg) / Vpavg] x 100% or [(Vpavg Vpmin) / Vpavg] x 100%, where Vpmax = the maximum V(n) and Vpmin = the minimum V(n).
- 5. Upadj = MAX[| (Vp(n) Vp(n+l) | / Vp(n)] x 100%.
- Upadj is the non-uniformity in percent between adjacent pixels, where Vp(n) is the nth pixel in the line scan.
- 6. Ud = Vdmax Vdmin.
 - Vd = the average dark output level. Vdmin is the minimum output on a black document (LED is turned off).

Vdmax: maximum output voltage of black document (LED is turned off.)

7. MTF = $[(Vpmax - Vpmin) / (Vpmax + Vpmin)] \times 100 [%];$ tested on a 300 lp/inch target.

Vmax: maximum output voltage at 50lp/in and Vmin: minimum output voltage at 50lp/in, where lp/in is the line pairs per inch.

8.0 Recommended Operating Conditions

The tabled values are measured at 25°C.

Table 5: Recommended Operating Conditions at 25°C					
Parameter	Symbol	Min.	Mean	Max.	Unit
Power supply	Vdd	4.5	5.0	5.5	V
	Vn.	-4.5	-5	-12	V
	VLED		5		V
	ldd	26	30	34	ma
	lvn		6.0	10.0	ma
	ILED		450	500	ma
Input voltage at digital high	Vih	Vdd-1.0	Vdd5	Vdd	V
Input voltage at digital low	Vil	0		0.8	V
Clock frequency ⁽¹⁾	fclk			5.5	MH
Clock pulse high duty cycle		25			%
Clock pulse high duration		50			ns
Integration time ⁽¹⁾	Tint	0.25		5.0	ms
Operating temperature	Тор		25	50	°C

Note:

1. Electrically, including the image sensors, the circuits will operate above 5.5MHz with tint at 455µs. However the light power is fixed, hence with the shorter integration time, the exposure is reduced. This reduction limits the specification call out to integration time of 500µs at 5.0MHz for 1.0V output.

AMIS-710625-A6: 600pdi CIS Module

9.0 Timing Characteristics

The timing characteristics for the I/O clocks are shown in Figure 3. See the timing symbol definitions in Table 6. The listed values are measured at \sim 25°C.

Parameters	Symbol	Min.	Тур.	Max.	Units
Clock cycle time	to	0.182		10000	μs
Clock pulse width	tw	45			ns
Clock duty cycle		25		75	%
Prohibit crossing time of start pulse	tprh	84			ns
Data setup time	tds	86			ns
Data hold time	tdh	94			ns
Signal delay time	tdl	50			ns
Signal settling time	tsh	98			ns

Table 6: Timing Symbol Definitions for Figure 3

AMIS-710625-A6: 600pdi CIS Module

10.0 AMIS-710625-A6 Module and Its Mechanical Dimensions

This is an overview drawing of the module. A full size drawing is available upon request.

11.0 Company or Product Inquiries

For more information about AMI Semiconductor, our technology and our product, visit our Web site at: http://www.amis.com

North America Tel: +1.208.233.4690 Fax: +1.208.234.6795

Europe Tel: +32 (0) 55.33.22.11 Fax: +32 (0) 55.31.81.12

Production Technical Data - The information contained in this document applies to a product in production. AMI Semiconductor and its subsidiaries ("AMIS") have made every effort to ensure that the information is accurate and reliable. However, the characteristics and specifications of the product are subject to change without notice and the information is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify that data being relied on is the most current and complete. AMIS reserves the right to discontinue production and change specifications and prices at any time and without notice. Products sold by AMIS are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AMIS makes no other warranty, express or implied, and disclaims the warranties of noninfringement, merchantability, or fitness for a particular purpose. AMI Semiconductor's products are intended for use in ordinary commercial applications. These products are not designed, authorized, or warranted to be suitable for use in life-support systems or other critical applications where malfunction may cause personal injury. Inclusion of AMIS products in such applications is understood to be fully at the customer's risk. Applications requiring extended temperature range, operation in unusual environmental conditions, or high reliability, such as military or medical life-support, are specifically not recommended without additional processing by AMIS for such applications. Copyright © 2006 AMI Semiconductor, Inc.

