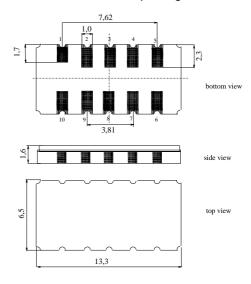


SAW Components

Data Sheet B5007

SAW Components B5007
Low-Loss Filter 143,25 MHz

Data Sheet

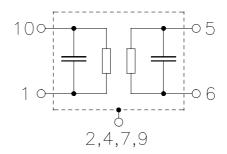

Features

- Low-loss IF filter for CDMA2000 base station, receive path
- 3,78 MHz usable bandwidth
- Balanced or unbalanced operation possible
- Temperature stable
- Hermetically sealed ceramic SMD package

Terminals

Gold plated

Ceramic package DCC12A


Dimensions in mm, approx. weight 0,4 g

Pin configuration

10	Input			
1	Input ground			

5 Output 6 Output ground

6 Output ground 2, 4, 7, 9 Case Ground 3, 8 To be grounded

Туре	Ordering code	Marking and Package	Packing		
		according to	according to		
B5007	B39141-B5007-H510	C61157-A7-A94	F61074-V8163-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Т	-30 / +85	°C
Storage temperature range	$T_{\rm stg}$	-30 / +85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	0	dBm

SAW Components B5007

Low-Loss Filter 143,25 MHz

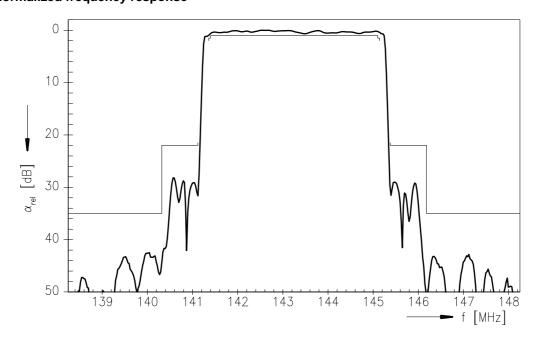
Data Sheet

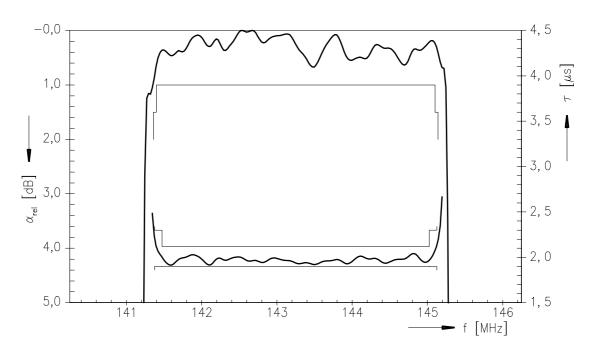
Characteristics

Operating temperature range: $T = 0..70 \,^{\circ}C$

Terminating source impedance: $Z_{\rm S} = 50 \, \Omega$ unbalanced and matching network Terminating load impedance: $Z_{\rm L} = 50 \, \Omega$ unbalanced and matching network

			min.	typ.	max.	
Nominal frequency		f_{N}	_	143,25	_	MHz
Minimum insertion attenuation (including matching network)		α_{min}	_	18,5	22,0	dB
Passband width						
$\alpha_{rel} \le$ 1,5 dB		$B_{1,5dB}$	3,78	3,95	_	MHz
Amplitude ripple (p-p)	$f_{\rm N} \pm 1,89 \ { m MHz}$ $f_{\rm N} \pm 1,85 \ { m MHz}$	Δα	_ _	1,0 0,6	1,5 1,0	dB dB
Group delay ripple (p-p)	$f_{\rm N} \pm 1,875 \ { m MHz}$ $f_{\rm N} \pm 1,775 \ { m MHz}$	Δτ	<u> </u>	300 150	400 220	ns ns
Difference of mean group delay in adj. channel $f_{\rm N}$ + k*1,25 MHz			_	8	30	ns
Absolute Group delay	<i>f</i> _N ± 1,875 MHz	τ	1,8	2,0	2,35	μs
Phase Linearity ¹⁾ (rms) $f_N + k^*1,25 \text{ M}$	ИНz ± 0,625 МНz	Δφ	_	1,0	2,0	۰
Average Error Vector Magnitud $f_N + k^*1,25 \text{ N}$	de ¹) MHz ± 0,625 MHz	EVM	_	2,5	4,0	%
Relative attenuation (relative to $f_{\rm N}\pm 2,13$ MHz $f_{\rm N}\pm 2,93$ MHz $f_{\rm N}\pm 35$ MHz $f_{\rm N}\pm 35$ MHz	$f_N \pm 2,93$ MHz $f_N \pm 35$ MHz	$lpha_{\text{rel}}$	22 35 40	27 40 55	_ _ _	dB dB dB
Temperature coefficient of free Turnover temperature	quency ²⁾	TC_{f} T_{0}	_ _	- 0,036 35	_ _	ppm/K ² °C

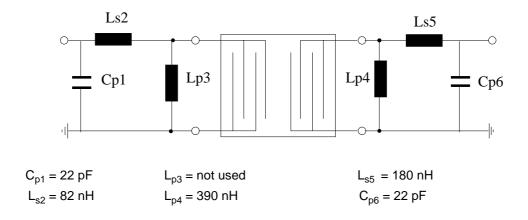

¹⁾ $_{\text{k}}$ = (-1,0,1) 2) Temperature dependance of fc: $_{\text{fc}}$ ($_{\text{T}}$) = $_{\text{fc}}$ ($_{\text{T}}$) = $_{\text{fc}}$ ($_{\text{T}}$) = $_{\text{fc}}$ ($_{\text{T}}$) = $_{\text{T}}$ ($_{\text{T}}$) = $_{\text{$


SAW Components B5007
Low-Loss Filter 143,25 MHz

Data Sheet

Normalized frequency response

Normalized frequency response (pass band)


SAW Components B5007

Low-Loss Filter 143,25 MHz

Data Sheet

Matching network to 50 Ω :

(element values depend on PCB layout)

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2004. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.