

Structure:

Silicon Monolithic Integrated Circuit

Product:

Band-pass filter for spectrum analyzer for car audio systems

Type ::

BA3835F

Function: 1. Built-in band pass filter for spectrum analyzer. BA3835F is for 5 bands.

2. Designed for 5V microcomputer power voltage.

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Power Supply voltage	Vcc	7	V
Power dissipation	Pd	450 [*]	mW
Operating temperature	Topr	−25∼+75	°C
Storage temperature	Tstg	-55∼+12 5	°C

[※]This value decreases 4.5 mW/°C for Ta=25°C or more.

Operating Voltage Range (Ta=25°C)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	Vcc	4.5	5.0	6.5	V

Electrical Characteristics

(Unless specified particularly, Ta=25°C, V_{cc} =5V, R_L =10M Ω , V_{AIN} =-30dBV, SEL=1)

Parameter Symbol			Limit		Unit	Conditions	
1 arameter	Cyrribor	Min.	Тур.	Max.	Offic	Conditions	
Circuit current	I _{cc}	_	8.5	13	mA	V _{AIN} =0V. A. B. C. SEL=0	
Maximum output level	V _{om}	4.0	4.8	_	V	V _{AIN} =-14dBV., Measured at each output	
Output offset voltage	V _{os}	-	30	150	mV	V _{AIN} =0V, SEL=0/1, Measured at each output (cycle time:Ts=50ms)	
Standard output level 1	Voi	0.65	1.35	1.70	V	f _{IN} =105Hz, A=0, B=0, C=1	
Standard output level 2	V _{o2}	0.65	1.35	1.70	٧	f _{IN} =340Hz, A=0, B=1, C=0	
Standard output level 3	V _{o3}	0.65	1.35	1.70	V	f _{IN} =1kHz. A=1, B=0, C=0	
Standard output level 4	V _{O4}	0.65	1.35	1.70	V	f _{IN} =3.4kHz, A=1, B=1, C=0	
Standard output level 5	V _{o5}	0.65	1.35	1.70	٧	f _{IN} =10.5kHz, A=1, B=1, C=1	

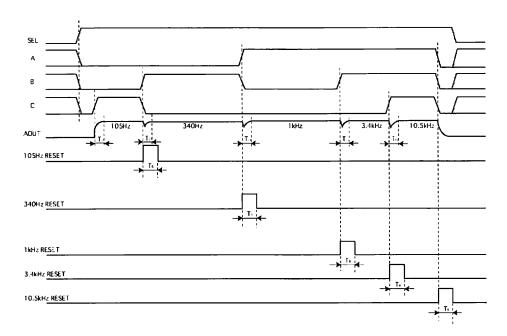
Application example

Note that ROHM cannot provide adequate confirmation of patents.

The product described in this specification is designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys).

Should you intend to use this product with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Davamatar	Symbol	Limit			Unit	Conditions	
Parameter	Symbol	Min.	Тур.	Max.	Offic		
Input impedance	R _{IN}	80	100	120	kΩ	f _{IN} =1kHz	
Common-mode rejection ratio	CMRR	25	50	<u> </u>	dB	f _{IN} =1kHz, V _{AIN} =V _{CIN}	
Logic input high level	V _{IH}	2.5	5.0	_	٧	_	
Logic input low level	V _{IL}	_	0	0.5	٧	Not applicable in the whan item 10 of operation notes applies.	
Output response time*1	То	_	5	10	μsec		
Discharge level	DL	_	3	_	dB	Reset pulse width T _R =10 μ secTyp.*2	

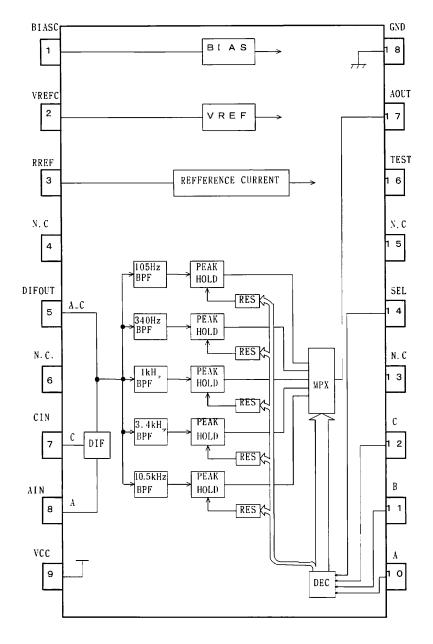

^{*1} The time from the rise of A, B, C or SEL until the rise of AOUT (90% of peak). If the output selection time is less than this, the output voltage is not guaranteed and the reset pulse is not generated.

Output select logic table

SEL	Α	В	С	AOUT
0	×	×	×	GND
1	0	0	0	GND
1	0	0	1	105Hz
1	0	1	0	340Hz
1	0	1	1	GND
1	1	0	0	1kHz
1	1	0	1	GND
1	1	1	0	3.4kHz
1	1	1	1	10.5kHz

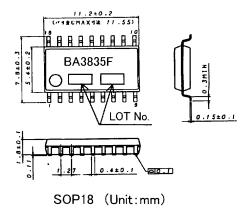
^{×:} Don't Care.

Timing chart


^{*2} Automatically generated internally based on the output select signal. For the duration that this signal is "H", a resister is connected to the peak hold capacitor, and the output level drops by -3dB (typ.) for one pulse.

^{*3} The Q of the bandpass filter is 3.5

O Not designed for radiation resistance.


Block Diagram

Terminal Number/ Terminal Name

Terminal	Terminal			
Number	Name			
1	BIASC			
2	VREFC			
3	RREF			
4	N.C			
5	DIFOUT			
6	N.C			
7	CIN			
8	AIN			
9	VCC			
10	Α			
11	В			
12	С			
13	N.C			
14	SEL			
15	N.C			
16	TEST			
17	AOUT			
18	GND			

Outline Dimension

Application example

- (1) Numbers and data in entries are representative design values and are not guaranteed values of the items.
- (2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics.
- (3) Absolute maximum ratings
 - If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI.
- (4) GND potential
 - Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.

4/4

(5) Thermal design

Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use.

(6) Shorts between pins and misinstallation

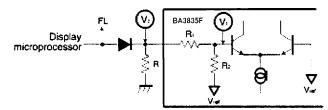
When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.

(7) Operation in strong magnetic fields

Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.

(8) Frequency characteristics

The frequency characteristics of this IC are determined by the resistor connected between the RREF terminal and GND. For the specification conditions, the value of this resistor is $100k\Omega$. If it is necessary to set the frequency characteristics accurately, use a variable resistor


(note: all bands will shift together).

(9) Load characteristics

To convert the bias sense output signal to the GND sense signal, the IC performs a V / I conversion, and then an I /V conversion using a 10k Ω resistor (Typ.) for the output. Therefore, if the load circuit connected to the AOUT pin has a MOS structure there is no problem (eg. Microprocessor input port), but if the connected circuit has a low input impedance, it may cause the output level to drop.

(10) External resistor for the control pin

When using a common port for the output select control and FL drive, you must add a diode and resistor as shown in the right figure to prevent the FL drive "L" voltage from destroying the IC.

In this case, the "L" voltage applied to the internal comparator input terminal V₁ is given by:

$$V_1 = \frac{R_1 + R}{R_1 + R_2 + R} \quad \times \quad V_{ref}$$

To maintain a noise margin of at least 2.5V with respect to the comparator threshold level VREF, the representative values for VREF, R1 and R2 are 1.5V, $20k\Omega$, and $10k\Omega$ respectively. This gives:

$$\frac{20k\Omega + R}{20k\Omega + 20k\Omega + R} \times 1.5V + 0.25V < 1.5V$$

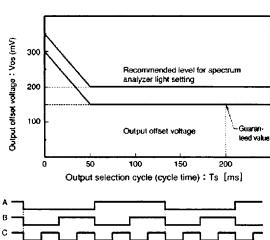
And from this, the following condition is obtained:

In this case, the "L" level voltage V2 for the IC will be: V₂<0.75V

(11) Recommended operating ranges

Provided that the IC is operated within recommended conditions operating and recommended temperature range, the basic circuit functions are guaranteed. Within these ranges, ratings for electrical characteristics for conditions other than those stipulated cannot be guaranteed, but the inherent function of the band pass filter will be maintained.

(12) Output offset voltage


The relationship between the output offset voltage and the output selection cycle (cycle time) for this IC is shown in Fig.5. The maximum output offset voltage of 150mV that is given in the electrical characteristics table is under the condition that Ts = 200ms.

When Ts is greater than 50ms, the graph of the output offset voltage is a straight line at 150mV. When Ts is below 50ms, due to transient

characteristics of the peak hold circuit, the graph is a line sloping downwards to the right. In other words, the shorter

the cycle, the larger the output offset voltage. Furthermore, the output offset voltage may shift due to soldering or other temperature stresses from the surroundings. Therefore, when setting the spectral analyzer light level, take into consideration the points given above

and make sure that it does not light by mistake during quiescent periods. Use the chart below as a guide for this, and, if necessary, leave even a larger margin.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available,
please contact your nearest sales office.

Please contact our sales offices for details;

```
U.S.A / San Diego
                        TEL: +1(858)625-3630
                                                 FAX: +1(858)625-3670
       Atlanta
                        TEL: +1(770)754-5972
                                                 FAX: +1(770)754-0691
       Dallas
                        TEL: +1(972)312-8818
                                                 FAX: +1(972)312-0330
Germany / Dusseldorf
                        TEL: +49(2154)9210
                                                 FAX: +49(2154)921400
United Kingdom / London TEL: +44(1)908-282-666
                                                 FAX: +44(1)908-282-528
France / Paris
                        TEL: +33(0)1 56 97 30 60 FAX: +33(0) 1 56 97 30 80
China / Hong Kong
                        TEL: +852(2)740-6262
                                                 FAX: +852(2)375-8971
       Shanghai
                        TEL: +86(21)6279-2727
                                                 FAX: +86(21)6247-2066
       Dilian
                        TEL: +86(411)8230-8549
                                                 FAX: +86(411)8230-8537
       Beijing
                        TEL: +86(10)8525-2483
                                                 FAX: +86(10)8525-2489
Taiwan / Taipei
                        TEL: +866(2)2500-6956
                                                 FAX: +866(2)2503-2869
Korea / Seoul
                        TEL: +82(2)8182-700
                                                 FAX: +82(2)8182-715
Singapore
                        TEL: +65-6332-2322
                                                 FAX: +65-6332-5662
Malaysia / Kuala Lumpur
                        TEL: +60(3)7958-8355
                                                 FAX: +60(3)7958-8377
Philippines / Manila
                        TEL: +63(2)807-6872
                                                 FAX: +63(2)809-1422
Thailand / Bangkok
                        TEL: +66(2)254-4890
                                                 FAX: +66(2)256-6334
```

Japan / (Internal Sales)

Tokyo 2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082

TEL: +81(3)5203-0321 FAX: +81(3)5203-0300

Yokohama 2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575

TEL: +81(45)476-2131 FAX: +81(45)476-2128

Nagoya Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya, Aichi 450-0002

TEL: +81(52)581-8521 FAX: +81(52)561-2173

Kyoto 579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokoujidori, Shimogyo-ku,

Kyoto 600-8216

TEL: +81(75)311-2121 FAX: +81(75)314-6559

(Contact address for overseas customers in Japan)

Yokohama TEL: +81(45)476-9270 FAX: +81(045)476-9271