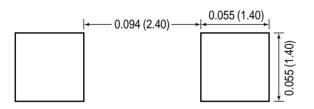
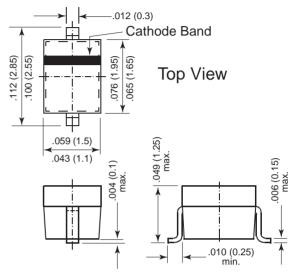


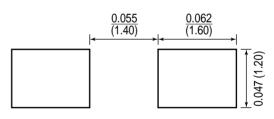
Vishay Semiconductors formerly General Semiconductor


Tuner Diodes

SOD-123 (BB731)


Mounting Pad Layout SOD-123 (BB731)

Features


- Silicon epitaxial planar capacitance diodes with very wide effective capacitance variation for tuning the VHF range 41 ... 170 MHz in hyperband television tuners.
- These diodes are available as singles or as matched sets of two or more units according to the tracking condition described in the table of characteristics.

SOD-323 (BB731S)

Dimensions in inches and (millimeters)

Mounting Pad Layout SOD-323 (BB731S)

Mechanical Data

Case: BB731 = SOD-123 Plastic Case BB731S = SOD-323 Plastic Case

Weight: BB731 = approx. 0.01g BB731S = approx. 0.004g

Packaging Codes/Options:

SOD-123: D3/10K per 13" reel (8mm tape), 30K/box D4/3K per 7" reel (8mm tape), 30K/box SOD-323: D5/10K per 13" reel (8mm tape), 30K/box D6/3K per 7" reel (8mm tape), 30K/box

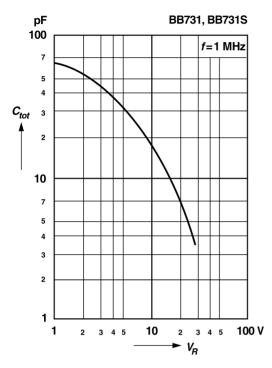
Maximum Ratings and Thermal Characteristics (Tc = 25°C unless otherwise noted)

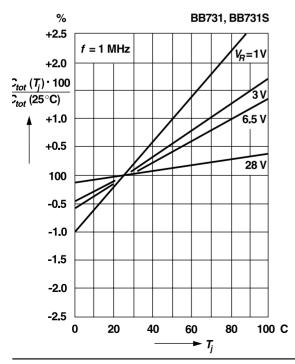
Parameter	Symbol	Value	Unit
Reverse Voltage	VR	32	V
Junction Temperature	TJ	125	°C
Storage Temperature Range	Ts	–55 to +125	°C

Vishay Semiconductors formerly General Semiconductor

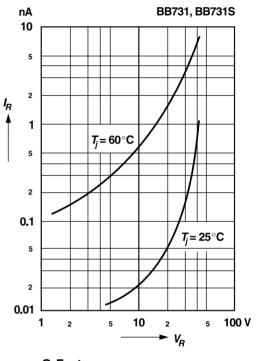
Electrical Characteristics (Tc = 25°C unless otherwise noted)

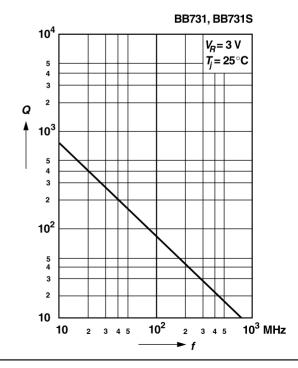
Parameter	Symbol	Min	Тур	Мах	Unit
Reverse Breakdown Voltage at I _R = 100μΑ	V _{(BR)R}	32	_	_	V
Leakage Current at $V_R = 30V$	IR	-	-	30	nA
Capacitance f = $1MH_Z$ at $V_R = 28V$ at $V_R = 25V$ at $V_R = 1V$	Ctot	3.15 _ _	- 3.5 50	3.55 _ _	pF
Effective Capacitance Ratio $f = 1MHz$ at $V_R = 1$ to 28V	<u>Ctot (1V)</u> Ctot (28V)	19.5	_	25	-
at $V_R = 3$ to 25V	$\frac{C_{tot} (3V)}{C_{tot} (25V)}$	_	14	_	-
Series Resistance at f = 300 MHz, Ctot = 25 pF	rs	_	0.9	1.0	Ω
Series Inductance	Ls	_	2.5	_	nH


For any two of six consecutive diodes in the carrier tape, the maximum capacitance deviation in the reverse bias voltage of VR = 0.5 to 28V is 3%


Ratings and Characteristic Curves (TA = 25°C unless otherwise noted)

Capacitance


versus reverse voltage


Relative capacitance versus junction temperature

Leakage current versus reverse voltage

Q-Factor versus frequency

Document Number 88157 15-May-02 Vishay Semiconductors formerly General Semiconductor