Mimix

August 2006 - Rev 03-Aug-06

**CF010 Series** 

## **Broadband Power GaAs MESFET** Chips

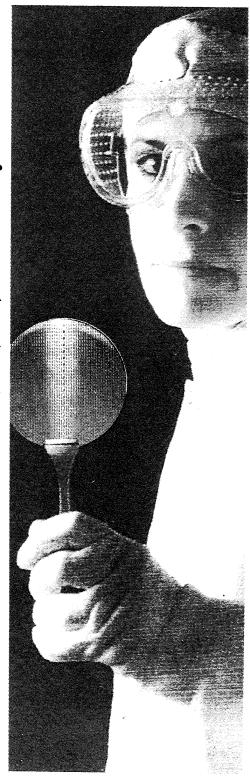
□ P<sub>1dB</sub> Power: CF003-01: +22 dBm CF005-01: +25 dBm CF010-01: +28 dBm

→ High Gain (@ 12 GHz):

CF003-01: 9.0 dB CF005-01: 8.5 dB CF010-01: 8.0 dB

- ☐ Broadband: Usable to 18 GHz
- ☐ Wafer Qualification Procedure
- ☐ Customer Wafer Selection Available

#### Celeritek Broadband Power Chips


Celeritek Medium Power Chips are GaAs MESFETs which include the CF003-01, CF005-01 and CF010-01 models. They are 600  $\mu m$ , 1200  $\mu m$  and 2400  $\mu m$  gate width, respectively. All have sub-half-micron gate lengths, Celeritek's proprietary Silicon Nitride passivation, and are fabricated on ion implanted wafers.

Celeritek's Wafer Qualification Procedure for these devices consists of DC, RF and reliability testing of both individual die and generic 6 to 18 GHz amplifier modules.

Celeritek's broadband power chips make up a family of GaAs FET devices which have high broadband gain and provide up to 1 watt in balanced 6 to 18 GHz amplifier circuits. These devices are also suitable for high power oscillators. In narrow band applications they offer superior associated gain.

These devices are available in chip form and are suitable for airborne, shipboard and ground-based equipment. Screening includes MIL-STD-750 Class B. Class S and commercial screening. These devices are also available in packaged form. Please consult the Packaged Power GaAs FET data sheets or contact the factory for further information.





Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com

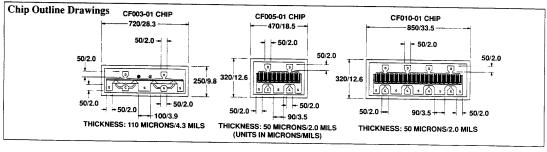


August 2006 - Rev 03-Aug-06

**CF010 Series** 

### **Broadband Power GaAs Chips**

| Specifi          | ications ( $T_A = 25^{\circ}C$ )                                                                                                                                                     |                    |       | C    | F003-            | -01  | C    | F005          | -01  | CF010-01         |      |      |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|------|------------------|------|------|---------------|------|------------------|------|------|--|
| Active Layer     |                                                                                                                                                                                      |                    |       |      | lon<br>Implanted |      |      | lon<br>nplant | ed   | lon<br>Implanted |      |      |  |
| Symbol           | Parameters and Conditions                                                                                                                                                            | Frequency<br>(GHz) | Units | Min  | Тур              | Max  | Min  | Тур           | Max  | Min              | Тур  | Max  |  |
| GL               | Linear Power Gain $V_{DS} = 6.0 \text{ V}, I_{DS} = 80 \text{ mA}$ $V_{DS} = 6.0 \text{ V}, I_{DS} = 160 \text{ mA}$ $V_{DS} = 6.0 \text{ V}, I_{DS} = 300 \text{ mA}$               | 12.0               | dB    | 8.0  | 9.0              |      | 7.5  | 8.5           |      | 7.0              | 8.0  |      |  |
| P <sub>1dB</sub> | Power Output @ 1 dB GC<br>V <sub>DS</sub> = 6.0 V, I <sub>DS</sub> = 80 mA<br>V <sub>DS</sub> = 6.0 V, I <sub>DS</sub> = 160 mA<br>V <sub>DS</sub> = 6.0 V, I <sub>DS</sub> = 300 mA | 12.0               | dBm   | 21.5 | 22.0             |      | 24.0 | 25.0          |      | 27.0             | 28.0 |      |  |
| g <sub>m</sub>   | Transconductance<br>V <sub>DS</sub> = 3.0 V, V <sub>GS</sub> = 0 V                                                                                                                   |                    | mS    |      | 120              |      |      | 240           |      |                  | 480  |      |  |
| IDSS             | Drain Current<br>V <sub>DS</sub> = 3.0 V, V <sub>GS</sub> = 0 V                                                                                                                      |                    | mA    | 120  | 180              | 240  | 220  | 350           | 440  | 440              | 700  | 880  |  |
| ۷ <sub>P</sub>   | Pinchoff Voltage<br>V <sub>DS</sub> = 3.0 V, I <sub>DS</sub> = 1 mA                                                                                                                  |                    | Volts | -0.7 | -1.3             | -2.5 | -0.7 | -1.3          | -2.5 | -0.7             | -1.3 | -2.5 |  |
| BV <sub>GD</sub> | Breakdown Voltage, Gate-Dr<br>I <sub>GD</sub> = 100 μA<br>I <sub>GD</sub> = 200 μA<br>I <sub>GD</sub> = 400 μA                                                                       | ain                | Volts | -5.5 | -8.0             |      | -5.5 | -8.0          |      | -5.5             | -8.0 |      |  |
| R <sub>th</sub>  | Thermal Resistance                                                                                                                                                                   |                    | °C/W  |      | 80               |      |      | 50            | ·    |                  | 25   |      |  |


**Absolute Maximum Ratings** 

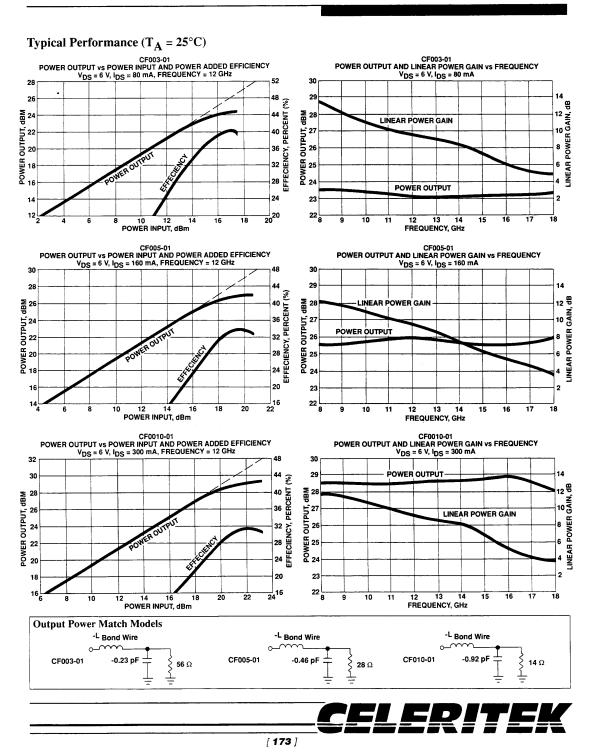
| TOSOIUC MAXIMUM Kath   | igs             |                 |
|------------------------|-----------------|-----------------|
| Parameter              | Symbol          | Ratings         |
| Drain-Source Voltage   | V <sub>DS</sub> | 8V              |
| Gate-Source Voltage    | V <sub>GS</sub> | -5V             |
| Drain Current          | IDS             | IDSS            |
| Continuous Dissipation | 50              | 555             |
| CF003-01               | PT              | 1.6 W           |
| CF005-01               | ΡŢ              | 3.0 W           |
| CF010-01               | ΡŢ              | 6.0 W           |
| Channel Temperature    | T <sub>CH</sub> | 175°C           |
| Storage Temperature    | TSTG            | -65°C to +175°C |

#### Die Attach and Bonding Procedures

**Die Attach:** Eutectic die attach is recommended. For eutectic die attach: Preform: AuSn (80% Au, 20% Sn); Stage Temperature: 290°C, ±5°C; Handling Tool: Tweezers; Time: 1 min or less.

**Wire Bonding:** Wire Size: 0.7 to 1.0 mil in diameter (prestressed); Thermocompression bonding is preferred over thermosonic bonding. For thermocompression bonding: Stage Temperature: 250°C; Bond Tip Temperature: 150°C; Bonding Tip Pressure: 18 to 40 gms depending on size of wire.








August 2006 - Rev 03-Aug-06

**CF010 Series** 

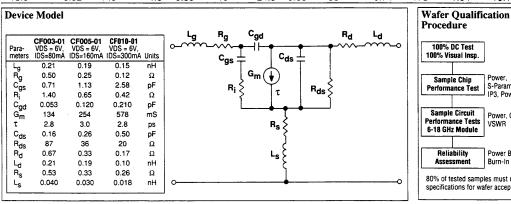
### **Broadband Power GaAs Chips**



Mimix

August 2006 - Rev 03-Aug-06

**CF010 Series** 


## **Broadband Power GaAs Chips**

Typical Scattering Parameters, Common Source (S-Parameters Include Bonding Wire Parasitics)

|           |                 |       |                 |       |       |                 |       |       |                |       | 6 V, I <sub>DS</sub> |      |
|-----------|-----------------|-------|-----------------|-------|-------|-----------------|-------|-------|----------------|-------|----------------------|------|
| Frequency | S <sub>11</sub> |       | S <sub>21</sub> |       |       | s <sub>12</sub> |       |       | S <sub>2</sub> | 22    | K                    | MSG  |
| (GHz)     | (Mag)           | (Ang) | (dB)            | (Mag) | (Ang) | (dB)            | (Mag) | (Ang) | (Mag)          | (Ang) |                      | (dB) |
| 2.0       | 0.91            | -62   | 16.7            | 6.86  | 138   | -28.6           | 0.04  | 59    | 0.23           | -37   | 0.38                 | 22.7 |
| 4.0       | 0.83            | -108  | 14.1            | 5.10  | 107   | -25.1           | 0.06  | 41    | 0.18           | -74   | 0.53                 | 19.6 |
| 6.0       | 0.80            | -132  | 11.8            | 3.88  | 88    | -24.0           | 0.06  | 33    | 0.17           | -90   | 0.71                 | 17.9 |
| 8.0       | 0.79            | -155  | 9.6             | 3.01  | 71    | -23.7           | 0.07  | 26    | 0.19           | -120  | 0.88                 | 16.6 |
| 10.0      | 0.78            | -172  | 7.6             | 2.39  | 57    | -24.1           | 0.06  | 24    | 0.23           | -134  | 1.15                 | 15.8 |
| 12.0      | 0.80            | 177   | 6.2             | 2.03  | 45    | -23.3           | 0.07  | 21    | 0.27           | -147  | 1.10                 | 14.7 |
| 14.0      | 0.80            | 166   | 5.0             | 1.78  | 33    | -23.2           | 0.07  | 17    | 0.31           | -156  | 1.20                 | 14.1 |
| 16.0      | 0.79            | 150   | 4.1             | 1.61  | 20    | -22.1           | 0.08  | 14    | 0.33           | -163  | 1.20                 | 13.1 |
| 18.0      | 0.80            | 135   | 3.5             | 1.49  | 5     | -21.3           | 0.09  | 9     | 0.32           | 179   | 1.18                 | 12.4 |

| CF005-01 at Power Bias |              |              |             |                          |          |                |                          |          | $V_{DS} = 6 \text{ V}, I_{DS} = 160 \text{ mA}$ |            |              |              |   |  |
|------------------------|--------------|--------------|-------------|--------------------------|----------|----------------|--------------------------|----------|-------------------------------------------------|------------|--------------|--------------|---|--|
| Frequency<br>(GHz)     | S<br>(Mag)   | 11<br>(Ang)  | (dB)        | S <sub>21</sub><br>(Mag) | (Ang)    | (dB)           | S <sub>12</sub><br>(Mag) | (Ang)    | S <sub>2</sub><br>(Mag)                         |            | К            | MSG<br>(dB)  | _ |  |
| 2.0                    | 0.78         | -109         | 16.1        | 6.35                     | 121      | -27.2          | 0.04                     | 30       | 0.35                                            | -177       | 0.69         | 21.6         | _ |  |
| 4.0<br>6.0             | 0.82<br>0.83 | -153<br>-174 | 11.7<br>8.5 | 3.85<br>2.67             | 90<br>72 | -25.4<br>-24.8 | 0.05<br>0.06             | 23<br>19 | 0.42<br>0.45                                    | 177<br>172 | 0.74<br>0.88 | 18.6<br>16.7 |   |  |
| 8.0<br>10.0            | 0.84<br>0.85 | 177<br>171   | 6.2<br>4.2  | 2.03<br>1.62             | 59<br>49 | -24.5<br>-24.5 | 0.06<br>0.06             | 20<br>21 | 0.47<br>0.47                                    | 170<br>167 | 1.02<br>1.20 | 15.3<br>14.3 |   |  |
| 12.0                   | 0.86         | 165          | 2.8         | 1.38                     | 39       | -23.5          | 0.07                     | 18       | 0.49                                            | 164        | 1.14         | 13.2         |   |  |
| 14.0<br>16.0           | 0.86<br>0.86 | 160<br>154   | 1.7<br>0.5  | 1.22<br>1.06             | 29<br>20 | -23.2<br>-22.5 | 0.07<br>0.08             | 19<br>15 | 0.51<br>0.53                                    | 162<br>160 | 1.16<br>1.14 | 12.4<br>11.5 |   |  |
| 18.0                   | 0.87         | 143          | -0.9        | 0.91                     | -9       | -22.7          | 0.07                     | 13       | 0.57                                            | 156        | 1.18         | 10.9         |   |  |

| CF010-01 at        | $V_{DS} = 6 \text{ V}, I_{DS} = 300 \text{ m/s}$ |             |      |                          |       |       |                          |       |                         |             |      |             |
|--------------------|--------------------------------------------------|-------------|------|--------------------------|-------|-------|--------------------------|-------|-------------------------|-------------|------|-------------|
| Frequency<br>(GHz) | S<br>(Mag)                                       | 11<br>(Ang) | (dB) | S <sub>21</sub><br>(Mag) | (Ang) | (dB)  | S <sub>12</sub><br>(Mag) | (Ang) | S <sub>2</sub><br>(Mag) | 22<br>(Ang) | K    | MSG<br>(dB) |
| 2.0                | 0.89                                             | -146        | 14.1 | 5.09                     | 100   | -30.4 | 0.03                     | 29    | 0.62                    | 180         | 0.54 | 22.3        |
| 4.0                | 0.90                                             | -173        | 8.4  | 2.64                     | 78    | -29.1 | 0.04                     | 29    | 0.66                    | 176         | 0.76 | 18.8        |
| 6.0                | 0.90                                             | 175         | 5.0  | 1.77                     | 65    | -28.2 | 0.04                     | 31    | 0.67                    | 174         | 0.94 | 16.6        |
| 8.0                | 0.91                                             | 170         | 2.6  | 1.34                     | 56    | -27.4 | 0.04                     | 36    | 0.68                    | 174         | 1.08 | 15.0        |
| 10.0               | 0.91                                             | 166         | 0.6  | 1.07                     | 49    | -27.4 | 0.04                     | 40    | 0.67                    | 174         | 1.26 | 14.0        |
| 12.0               | 0.91                                             | 163         | -0.9 | 0.90                     | 41    | -26.0 | 0.05                     | 37    | 0.69                    | 174         | 1.15 | 12.6        |
| 14.0               | 0.92                                             | 161         | -2.1 | 0.78                     | 35    | -25.5 | 0.05                     | 41    | 0.70                    | 175         | 1.10 | 11.7        |
| 16.0               | 0.91                                             | 158         | -3.3 | 0.68                     | 28    | -24.9 | 0.06                     | 36    | 0.72                    | 175         | 1.05 | 10.8        |
| 18.0               | 0.92                                             | 149         | -4.6 | 0.59                     | 19    | -24.8 | 0.06                     | 33    | 0.74                    | 173         | 1.04 | 10.1        |



S-Parameters, IP3, Power Blast Power, Gain, VSWR Power Blast & Burn-In specifications for wafer acceptance.

3236 Scott Boulevard Santa Clara, California 95054 (408) 986-5060 Fax: (408) 986-5095

Specifications subject to change.



[ 174 ]