All Band TV Tuner IC with On-chip PLL

Description

The CXA3252N is a monolithic TV tuner IC which integrates local oscillator and mixer circuits for VHF band, local oscillator and mixer circuits for UHF band, an IF amplifier and a tuning PLL onto a single chip, enabling further miniaturization of the tuner.

Features

- Superior cross modulation
- Supports both IF double-tuned filter and adjacent channel trap.
- Balanced UHF oscillator (4 pins) with excellent oscillation stability
- Supports both $\mathrm{I}^{2} \mathrm{C}$ and 3-wire bus modes
- Automatic identification of 18,19 or 27 -bit control (during 3-wire bus mode)
- On-chip high voltage drive transistor for charge pump
- Reference frequency selectable from $31.25,50$ or 62.5 kHz (when using a 4 MHz crystal)
- Low-phase noise synthesizer
- On-chip 4-output band switch
(supports output voltages from 5 to 9 V)
- 32 pin SSOP

Applications

- TV tuners
- VCR tuners
- CATV tuners

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

- Supply voltage

Vcc1, Vcc2-0.3 to +5.5 V
Vcc3 -0.3 to +10.0 V

- Storage temperature Tstg -55 to $+150{ }^{\circ} \mathrm{C}$
- Allowable power dissipation

Operating Conditions

- Supply voltage

Vcc1, Vcc2 4.75 to 5.30
V
Vcc3
4.75 to 9.45

V

- Operating temperature Topr -25 to $+75{ }^{\circ} \mathrm{C}$

Pd 580 mW
(when mounted on a printed circuit board)

[^0]
Block Diagram and Pin Configuration

Pin Description

Pin No.	Symbol	Description
1	CL	CLOCK/SCL (${ }^{2} \mathrm{C}$ bus)
2	DA	DATA/SDA (${ }^{2} \mathrm{C}$ bus)
3	BS3	Band switch output 3
4	BS1	Band switch output 1 (VHF low band)
5	IFIN1	IF amplifier input 1
6	IFIN2	IF amplifier input 2
7	BS2	Band switch output 2 (VHF high band)
8	BS4	Band switch output 4
9	VCC1	Analog circuit Vcc
10	MIXOUT1	MIX output (open collector)
11	MIXOUT2	MIX output (open collector)
12	GND1	Analog circuit GND
13	BYP/MS	VHF input GND and control bus switching
14	VHFIN	VHF input
15	UHFIN1	UHF input
16	UHFIN2	UHF input
17	VOSC1	VHF oscillator (base input)
18	GND	GND
19	VOSC2	VHF oscillator (collector output)
20	UOSCB1	UHF oscillator (base pin)
21	UOSCE1	UHF oscillator (emitter pin)
22	UOSCE2	UHF oscillator (emitter pin)
23	UOSCB2	UHF oscillator (base pin)
24	VCC2	PLL circuit Vcc
25	GND2	PLL circuit GND
26	IFOUT	IF amplifier output
27	NC	OPEN
28	VT	Tuning voltage output (open collector)
29	CPO	Charge pump output (loop filter connection)
30	REFOSC	Crystal connection
31	VCC3	Band switch power supply
32	ADSW/CE	Enable/address selection (I2C bus)

Pin Description and Equivalent Circuit

\begin{tabular}{|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
$$ \& Symbol \& Pin Voltage [V] \& Equivalent circuit \& Description

\hline 1 \& CL \& - \& \& Clock input.

\hline 2 \& DA \& - \& \& DATA input.

\hline 3
8 \& BS3
BS4 \& $$
\begin{aligned}
& \text { ON : } 4.8 \\
& \text { OFF : } 0.0
\end{aligned}
$$ \& \& \multirow{2}{*}{Band switch outputs. The pin corresponding to the selected band goes High.}

\hline 4
7 \& BS1
BS2 \& 2.1 \& \&

\hline 5
6 \& IFIN1

IFIN2 \& 2.1 \& \&

\hline 9 \& VCC1 \& - \& \& Analog circuit power supply.

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Pin
No. \& Symbol \& Pin Voltage [V] \& Equivalent circuit \& Description

\hline 10
11 \& MIXOUT1
MIXOUT2 \& -

- \& \& | Mixer output. |
| :--- |
| These pins output the signal with open collector, and they must be connected to the power supply via the load. |

\hline 12 \& GND1 \& - \& - \& Analog circuit GND.

\hline 13 \& BYP/MS \& | 3.8 during |
| :---: |
| VHF reception |$|$| 3.8 during |
| :---: |
| UHF reception | \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{| Pin 12 : VHF input grounding and control bus switching. |
| :--- |
| Pin 13 : VHF input. Input format is the unbalanced input. |}

\hline 14 \& VHFin \& 2.6 during VHF reception 0.1 during UHF reception \& \&

\hline 15 \& UHFin1 \& | 2.6 during |
| :---: |
| UHF reception |$|$| 0.1 during |
| :---: |
| VHF reception | \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{| UHF inputs. |
| :--- |
| Input the signal to Pins 14 and 15 symmetrically or ground either of Pin 14 or 15 with the capacitor and input the signal to the rest. |}

\hline 16 \& UHFin2 \& | 2.6 during |
| :---: |
| UHF reception |$|$| 0.1 during |
| :---: |
| VHF reception | \& \&

\hline 17 \& VOSC1 \& | 2.1 during VHF reception |
| :--- |
| 2.3 during UHF reception | \& \multirow[t]{2}{*}{(9)} \& \multirow[b]{2}{*}{External resonance circuit connection for VHF oscillator.}

\hline 19 \& VOSC2 \& | 4.2 during VHF reception |
| :--- |
| 5.0 during UHF reception | \& \&

\hline 18 \& GND \& - \& - \& GND for separating the analog and PLL systems.

\hline
\end{tabular}

$\begin{array}{\|l} \hline \text { Pin } \\ \text { No. } \end{array}$	Symbol	Pin Voltage [V]	Equivalent circuit	Description
20	UOSCB1	2.1 during UHF reception 2.3 during VHF reception	$\begin{equation*} \dot{\mathbf{X}} \dot{\mathbf{X}} \dot{\mathbf{X}} \dot{\mathbf{X}} \tag{9} \end{equation*}$	
21	UOSCE1	1.4 during UHF reception 1.8 during VHF reception	(22	External resonance circuit
22	UOSCE2	1.4 during UHF reception 1.8 during VHF reception	$\text { (20) } \quad \cdots \quad F_{:} \cos _{3 k}$	
23	UOSCB2	2.1 during UHF reception 2.3 during VHF reception	$\begin{array}{lc} \mathbf{\Sigma} \overline{\mathbf{Q}} & { }^{3 k} \\ \pi m \pi & 1 \\ \pi & \pi \end{array}$	
24	VCC2	-	-	PLL circuit power supply
25	GND2	-	-	PLL circuit GND.
26	IFOUT	2.7	(9) (26)	I/F output.
27	NC	-	-	
28 29	VT	2.0		Varicap drive voltage output. This pin outputs the signal with open collector, and this must be connected to the tuning power supply via the load. Charge pump output. Connects the loop filter.
30	REFOSC	4.3		Crystal connection for reference oscillator.
31	vcc3	-	-	Power supply for external supply.
32	ADSW/CE	$\begin{gathered} 1.25 \\ \text { (when open) } \end{gathered}$		$1^{2} \mathrm{C}$ bus setting : Address selection. Bits 1 and 2 of the address byte are controlled. 3 -wire bus setting : Enable input.

Electrical Characteristics

Circuit Current
$\left(\mathrm{VCC}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Circuit current A	Alccv	Vcc1 current, band switch output open during VHF operation				mA
	Alccu	Vcc1 current, band switch output open during UHF operation				mA
	Dlcc	Vcc2 current				mA

OSC/MIX/IF Amplifier Block

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Conversion gain	CG1	VHF operation $\mathrm{fRF}^{\text {c }}=55 \mathrm{MHz}$				dB
	CG2	VHF operation fRF $=360 \mathrm{MHz}$				dB
	CG3	UHF operation fRF $=360 \mathrm{MHz}$				dB
	CG4	UHF operation $\mathrm{frF}_{\text {R }}=800 \mathrm{MHz}$				dB
Noise figure ${ }^{* 1, *_{2}}$	NF1	VHF operation $\mathrm{fRF}^{\text {a }}=55 \mathrm{MHz}$				dB
	NF2	VHF operation fRF $=360 \mathrm{MHz}$				dB
	NF3	UHF operation $\mathrm{fRF}^{\text {c }}=360 \mathrm{MHz}$				dB
	NF4	UHF operation $\mathrm{fRF}^{\text {c }}=800 \mathrm{MHz}$				dB
1% cross **,*3 modulation	CM1	VHF operation $\mathrm{fD}=55 \mathrm{MHz}, \mathrm{fuD}= \pm 12 \mathrm{MHz}$				$\mathrm{dB} \mu$
	CM2	VHF operation $\mathrm{fd}=360 \mathrm{MHz}$, fud $= \pm 12 \mathrm{MHz}$				$\mathrm{dB} \mu$
	CM3	UHF operation $\mathrm{fD}=360 \mathrm{MHz}, \mathrm{fuD}= \pm 12 \mathrm{MHz}$				$\mathrm{dB} \mu$
	CM4	UHF operation $\mathrm{fD}=800 \mathrm{MHz}$, fud $= \pm 12 \mathrm{MHz}$				$\mathrm{dB} \mu$
Maximum output power	Pomax	50Ω load saturation output				dBm
Switch ON drift *4	$\Delta \mathrm{fsw} 1$	VHF operation fosc=100 MHz Δ from 3 s to 3 min after switch ON				kHz
	$\Delta \mathrm{fsw} 2$	VHF operation fosc $=405 \mathrm{MHz}$ Δ from 3 s to 3 min after switch ON				kHz
	Δ fsw3	UHF operation fosc $=405 \mathrm{MHz}$ Δ from 3 s to 3 min after switch ON				kHz
	Δ fsw4	UHF operation fosc $=845 \mathrm{MHz}$ Δ from 3 s to 3 min after switch ON				kHz

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Supply voltage * drift	$\Delta \mathrm{fst} 1$	VHF operation fosc $=100 \mathrm{MHz}$ Δf when Vcc 5 V changes $\pm 5 \%$				kHz
	$\Delta \mathrm{fst} 2$	VHF operation fosc $=405 \mathrm{MHz}$ Δf when Vcc 5 V changes $\pm 5 \%$				kHz
	Δ fst3	UHF operation fosc= 405 MHz Δf when Vcc 5 V changes $\pm 5 \%$				kHz
	$\Delta \mathrm{fst} 4$	UHF operation fosc $=845 \mathrm{MHz}$ Δf when Vcc 5 V changes $\pm 5 \%$				kHz
Oscillator phase noise	C/N V	10 kHz offset				$\mathrm{dBc} / \mathrm{Hz}$
	C / NU	10 kHz offset				$\mathrm{dBc} / \mathrm{Hz}$
Reference leak	REFL	Phase comparison frequency of $62.5 \mathrm{kHz}, \mathrm{CP}: 1$				dB
Lock-up time	LUT 1					msec
	LUT 2					msec

${ }^{4}$ Value measured with untuned input.
${ }^{2} \mathrm{NF}$ meter direct-reading value (DSB measurement).
${ }^{3}$ Value with a desired reception signal input level of -30 dBm , an interference signal of $100 \mathrm{kHz} / 30 \% \mathrm{AM}$, and an interference signal level where $\mathrm{S} / \mathrm{l}=46 \mathrm{~dB}$ measuered with a spectrum analyzer.
${ }^{4}$ Value when the PLL is not operating.

PLL Block

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
CL, DA pins						
"H" level input voltage	VIH		3		Vcc	V
"L" level input voltage	VIL		GND		1.5	V
"H" level input current	IIH	VIH $=$ Vcc		0	-0.1	$\mu \mathrm{A}$
"L" level input current	IIL	VIL=GND		-0.3	-4	$\mu \mathrm{A}$
CE input						
"H" level input voltage	VIH		3		Vcc	V
"L" level input voltage	VIL		GND		1.5	V
"H" level input current	ІІн	$\mathrm{VIH}=\mathrm{Vcc}$		-100	-200	$\mu \mathrm{A}$
"L" level input current	IIL	VIL=GND		35	100	$\mu \mathrm{A}$
SDA output						
"H" output leak current	VIH	Vin $=5.5 \mathrm{~V}$			5	V
"L" output voltage	VIL	lout=-3 mA	GND		0.4	V
CPO (charge pump)						
Output current 1	ICPO1	Byte4/Bit6=0	± 35	± 50	± 75	$\mu \mathrm{A}$
Leak current 1	LeakCP1	Byte4/Bit6=0			30	nA
Output current 2	ICPO2	Byte4/Bit6=1	± 140	± 200	± 300	$\mu \mathrm{A}$
Leak current 2	LeakCP2	Byte4/Bit6=1			100	nA
VT (VC voltage output)						
Maximum output voltage	VTH				33	V
Minimum output voltage	VTL			0.5	0.8	V
LOCK						
"H" output voltage	Vlockh	When locked	Vcc-0.5		Vcc	V
"L" output voltage	Vlockl	When unlocked	0		0.5	V
REFOSC						
Oscillation frequency range	Fxtosc		3		12	MHz
Input capacitance	Cxtosc		22	24	26	pF
Negative resistance	Rneg	Crystal source impedance		-2	-1	k Ω
Band SW						
Output current	IBS	When ON			-25	mA
Saturation voltage	VSAT	When ON Source current=20 mA		120	240	mV
Leak current	LeakBS	When OFF		0.5	3	$\mu \mathrm{A}$

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Bus timing (${ }^{2} \mathrm{C}$ bus)						
SCL clock frequency	fscl		0		400	kHz
Start waiting time	twsta		1300			ns
Start hold time	thsta		600			ns
"L" hold time	tLow		1300			ns
"H" hold time	tHIGH		600			ns
Start setup time	tssta		600			ns
Data hold time	tahdat		1300			ns
Data setup time	tsdat		600			ns
Rise time	tR				300	ns
Fall time	tF				300	ns
Stop setup time	tssto		600			ns
Bus timing (3-wire bus)						
Data setup time	tsd		300			ns
Data hold time	tho		600			ns
Enable waiting time	twe		300			ns
Enable setup time	tse		300			ns
Enable hold time	the		600			ns

Electrical Characteristics Measurement Circuit (I2C bus control)

Unmarked Ls are air coils with a wire diameter of 0.5 mm .

Electrical Characteristics Measurement Circuit (3-wire bus control)

Unmarked Ls are air coils with a wire diameter of 0.5 mm .

Application Circuit (${ }^{2} \mathrm{C}$ bus control)

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Application Circuit (3-wire bus control)

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Description of Functions

The CXA3252N is a ground wave broadcast tuner IC which converts frequencies to IF in order to tune and detect only the desired reception frequency of VHF, CATV and UHF band signals.
In addition to the mixer, local oscillation and IF amplifier circuits required for frequency conversion to IF, this IC also integrates a PLL circuit for local oscillation frequency control onto a single chip.

The functions of the various circuits are described below.

1. Mixer circuit

This circuit outputs the frequency difference between the signal input to VHFIN or UHFIN and the local oscillation signal.
2. Local oscillation circuit

A VCO is formed by externally connecting an LC resonance circuit composed of a varicap diode and inductance.
3. IF amplifier circuit

This circuit amplifies the mixer IF output, and consists of an amplifier stage and low impedance output stage.
4. PLL circuit

This PLL circuit fixes the local oscillation frequency to the desired frequency. It consists of a programmable divider, reference divider, phase detector, charge pump and reference oscillator. The control format supports both the $\mathrm{I}^{2} \mathrm{C}$ bus and 3 -wire bus formats.
During ${ }^{2} \mathrm{C}$ bus control, the frequency steps of $31.25,50$ or 62.5 kHz can be selected by the frequency division setting value of the data-based referencedivider.
During 3-wire bus control, these frequency steps can be selected by the combination of the data length (18 or 19 bits) and the voltage applied to the BYP/MS pin.
5. Band switch circuit

The CXA3252N has four sets of built-in PNP transistors for switching between the VL, VH and UHF bands and for switching the FM trap, etc. These PNP transistors can be controlled by the bus data.

The emitters for these PNP transistors are connected to an independent power supply pin (Vcc3) from the oscillator, mixer and PLL circuits, and support either 5 V or 9 V as the RF amplifier power supply.

Description of Analog Block Operation

(See the Electrical Characteristics Measurement Circuit.)

VHF oscillator circuit

- This circuit is a differential amplifier type oscillator circuit. Pin 19 is the output and Pin 17 is the input. Oscillation is performed by connecting an LC resonance circuit including a varicap to Pin 19 via coupled capacitance, inputting to Pin 17 with feedback capacitance, and applying positive feedback.
- The amplifier between Pins 17 and 19 has an extremely high gain. Therefore, care should be taken to avoid creating parasitic capacitance, resistance or other feedback loops as this may produce abnormal oscillation.

VHF mixer circuit

- The mixer circuit employs a double balanced mixer with little local oscillation signal leakage.

The input format is base input type, with Pin 13 grounded via a capacitor and the RF signal input to Pin 14. (Pin 13 can also be used to switch the PLL mode according to the applied DC voltage value.)

- The RF signal is converted to IF frequency by oscillator signal and output from Pins 10 and 11.

Pins 10 and 11 are open collectors, so external power supply is necessary. In addition, single-tuned filters are connected to Pins 10 and 11.

UHF oscillator circuit

- This oscillator circuit is designed so that two collector ground type Colpitts oscillators perform differential oscillation operation via an LC resonance circuit including a varicap.
- Resonance capacitance is connected between Pins 20 and 21, Pins 21 and 22, and Pins 22 and 23, and an LC resonance circuit including a varicap is connected between Pins 20 and 23.

UHF mixer circuit

- This circuit employs a double balanced mixer like the VHF mixer circuit.

The input format is base input type, with Pins 15 and 16 as the RF input pins. The input method can be selected from balanced input consisting of differential input to Pins 15 and 16 or unbalanced input consisting of grounding Pin 15 via a capacitor and input to Pin 16.

- Pins 10 and 11 are the mixer outputs. Pins 10 and 11 are open collectors, so external power supply is necessary. In addition, single-tuned filters are connected to Pins 10 and 11.

IF amplifier circuit

- Pins 5 and 6 are IF amplifier inputs with an input impedance of approximately $1 \mathrm{k} \Omega$.
- The signals frequency converted by the mixer are output from Pins 10 and 11, so Pins 10 and 11 are connected to Pins 5 and 6 via capacitors. (A neighboring channel trap circuit can be formed by connecting a L and C parallel circuit instead of capacitors.)
- The signal amplified by the IF amplifier is output from Pin 26.

The output impedance is approximately 75Ω.

Description of PLL Block

This IC supports both $I^{2} \mathrm{C}$ bus and 3 -wire bus control.
The $I^{2} \mathrm{C}$ bus conforms to the standard $I^{2} \mathrm{C}$ bus format, and bidirectional bus control is possible consisting of a write mode in which various data are received and a read mode in which various data are sent.
The 3 -wire bus is equipped with an 18- or 19-bit auto identify function, and the frequency step can be switched according to the voltage applied to the BYP/MS pin.
The PLL of this IC does not have a fixed frequency division circuit and performs high-speed phase comparison, providing low reference leak and quick lock-up time characteristics.

Pin Function Table

Symbol	$I^{2} \mathrm{C}$ bus	3-wire bus
CL	SCL input	CLOCK input
DA	SDA I/O	DATA input
ADSW/CE	Address selection	ENABLE input

1) PLL Mode Setting Method

The selected control bus is set according to the BYP/MS pin (Pin 13) voltage.

BYP/MS pin	Control bus
GND	I $^{2} \mathrm{C}$ Bus
OPEN	3 -wire bus
Vcc	3 -wire bus

During 3 -wire bus control, the transferred bit length (18,19 or 27 bits) is automatically identified.
During 18- or 19-bit transfer, the frequency steps in the table below are set according to the combination of the BYP/MS pin voltage and the bit length. This IC does not have a fixed frequency division circuit, so the phase comparison frequency becomes the frequency step.

BYP/MS Pin voltage	Transfer bit length	Reference Divider	Phase comparison frequency	Frequency Step*
	18	64	62.5 kHz	62.5 kHz
OPEN	19	128	31.25 kHz	31.25 kHz
OPEN	27	Selectable from 64,80 or 128	$62.5 \mathrm{kHz} /$ 50.0 kHz or VCC	

* Phase comparison frequency and frequency step are for when the crystal oscillation $=4 \mathrm{MHz}$.

2) Programming

The VCO lock frequency is obtained according to the following formula.
fosc $=$ fref $\times(32 \mathrm{M}+\mathrm{S})$
fosc: local oscillator frequency
fref : phase comparison frequency
M : main divider frequency division ratio
S : swallow counter frequency division ratio
The variable frequency division ranges of M and S are as follows, and are set as binary.
$S<M \leq 1023$ ($S<M \leq 511$ during 18-bit transfer)
$0 \leq \mathrm{S} \leq 31$
3) $I^{2} C$ Bus Control

This IC conforms to the standard $I^{2} \mathrm{C}$ bus format, and bidirectional bus control is possible consisting of a write mode in which various data are received and a read mode in which various data are sent. Write and read modes are recognized according to the setting of the final bit (R/W bit) of the address byte. Write mode is set when the R/W bit is " 0 " and read mode is set when the R/W bit is " 1 ".

3-1) Address settings
Up to four addresses can be selected by the hardware bit settings, so that multiple PLL can exist within one system.
The responding address can be set according to the ADSW/CE pin voltage.

1	1	0	0	0	MA1	MA0	R/W

Address

"CE" pin voltage	MA1	MA0
0 to 0.1 VCC	0	0
OPEN or 0.2 VCC to $0.3 ~ V C C ~$	0	1
0.4 VCC to 0.6 VCC	1	0
0.9 VCC to VCC	1	1

Hardware bits

3-2) Write mode
Write mode is used to receive various data. In this mode, byte 1 contains the address data, bytes 2 and 3 contain the frequency data, byte 4 contains the control data, and byte 5 contains the band switch data.
These data are latch transferred in the manner of byte 1 , byte $2+$ byte 3 , and byte $4+$ byte 5 .
When the correct address is received and acknowledged, the data is recognized as frequency data if the first bit of the next byte is " 0 ", and as control data and band switch data if this bit is " 1 ".
Also, when data transmission is stopped part-way, the previously programmed data is valid. Therefore, once the control and band switch data have been programmed, 3-byte commands consisting of the address and frequency data are possible.
Further, even if the $I^{2} C$ bus stop conditions are not met, data can be input by sending the start conditions and the new address.

The control format is as shown in the table below.

Write-mode : Slave Receiver

	MSB							LSB	
MODE	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
Address byte	1	1	0	0	0	MA1	MA0	0	A
Divider byte 1	0	M9	M8	M7	M6	M5	M4	M3	A
Divider byte 2	M2	M1	M0	S4	S3	S2	S1	S0	A
Control byte	1	CP	0	CD	X	R1	R0	OS	A
Band SW byte	X	X	X	X	BS4	BS3	BS2	BS1	A

X : Don't care

A : Acknowledge bit
MA0, MA1 : address setting
M0 to : main divider frequency division ratio setting
S0 to : swallow counter frequency division ratio setting
CD : charge pump OFF (when "1")
OS : varicap output OFF (when "1")
CP : charge pump current switching (200 $\mu \mathrm{A}$ when " 1 ", $50 \mu \mathrm{~A}$ when " 0 ")
BS1 to BS4 : band switch control (output PNP transistor ON when "1")
R0, R1 : reference divider frequency division ratio setting.
(see the Reference Divider Frequency Division Ratio Table)

Reference Divider Frequency Division Ratio Table

R1	R0	Reference divider
0	1	128
1	1	64
X	0	80

X : Don't care

3-3) Read mode

In read mode, power- on reset operation status the phase comparator locked/unlocked status and 5-level A/ D converter input pin voltage status are transmitted and output to the master.

The read data format is as shown in the table below.

Read mode : Slave Transmitter

MODE	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
Address byte	1	1	0	0	0	MA1	MA0	1	A
Status byte	X	FL	1	1	1	0	0	0	A

A : Acknowledge bit
MA0, MA1 : address setting
FL : lock detection signal (1 : locked, 0 : unlocked)

Example of Representative Characteristics

Band SW output voltage vs. Output current (BS1, BS2, BS3, BS4)

Band SW output voltage vs. Output current

Noise figure vs. Reception frequency (Untuned input, in DSB)

Tuning Response Time 1

VHF (Low) $95 \mathrm{MHz} \rightarrow$ VHF (High) $395 \mathrm{MHz}(\mathrm{CP}=0)$

Tuning Response Time 2

UHF $413 \mathrm{MHz} \rightarrow$ UHF $847 \mathrm{MHz}(\mathrm{CP}=0)$

Tuning Response Time 3

VHF (High) $395 \mathrm{MHz} \rightarrow$ VHF (Low) $95 \mathrm{MHz}(\mathrm{CP}=0)$

Tuning Response Time 4

UHF $847 \mathrm{MHz} \rightarrow$ UHF $413 \mathrm{MHz}(\mathrm{CP}=0)$

IF output spectrum

IF output spectrum

CENTER 45.0 MHz
\#RES BW 1.0 kHz

SPAN 100.0 kHz SWP 30.0 sec

IF output spectrum

VHF Input Impedance

UHF Input Impedance

IF Output Impedance

Package Outline Unit: mm

32PIN SSOP(PLASTIC)

SONY CODE	SSOP-32P-L01
EIAJ CODE	SSOP032-P-0056
JEDEC CODE	-

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	PALLADIUMA PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.1 g

[^0]: This IC has the pins whose electrostatic discharge strength is weak as the operating frequency is high and the high-frequency process is used for this IC.
 Take care of handling the IC.
 Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

