Design Idea DI-63 TinySwitch-II 4.8 W CV/CC Charger with Output Cable-Drop Compensation

Application	Device	Power Output	Input Voltage	Output Voltage	Topology
Charger	TNY266P	4.8 W	$85-265 \mathrm{VAC}$	$6 \mathrm{~V}, 800 \mathrm{~mA} \pm 7 \%$	Flyback

Design Highlights

- Universal input, no-load consumption < 300 mW
- Meets CISPR-22 Class B EMI without a Y capacitor
- Extremely simple circuit, requires only 32 components!
- Circuit has output cable voltage drop compensation
- Ultra-low Leakage current: $<5 \mu \mathrm{~A}$ at 265 VAC input

Operation

Fusible resistor RF1 provides short-circuit fault protection and limits start-up inrush current. Inductors L1 and L2 and capacitors C 1 and C 2 form a low-cost pi (π) filter that attenuates conducted EMI.

Transformer (T1) has two shield windings (1-3 and 1-open) which reduce the generation of EMI noise. Winding phasing and D7 orientation let no secondary winding current flow when the MOSFET in U1 is ON, so primary winding current stores energy in the core of T1. When the MOSFET in U1 turns OFF, the energy stored in T1 drives current out of the secondary
winding, forward biasing D7, charging C7 and developing/ maintaining the output voltage across C 7 . The V_{BE} of Q 1 and the V_{Z} of VR1 determine the CV set point. The voltage across R4, R5 and the U2-LED determine the CC set point.

Resistors R7, R10 and diode D6 compensate for output-cable voltage-drop. The CV portion of the output VI curve is flat, at the end of the cable, because a current sense resistor (R10) equal to the $D C$ resistance of the output cable is in the voltage feedback loop. Diode D6 implements temperature compensation for the cable drop.

The combination of TinySwitch-II frequency jitter, the output diode snubber (R6 and C5), the T1 shield windings and careful primary clamp circuit component selection enable compliance with CISPR-22, Class B conducted EMI limits, without a Y-1 Safety capacitor. Eliminating the Y capacitor gives this circuit very low $(<5 \mu \mathrm{~A}) \mathrm{AC}$ leakage current.

This circuit is suitable for portable electronics chargers.

Figure 1. TinySwitch-II Based Charger/Adapter Circuit Diagram.

Key Design Points

- Secondary feedback bias current and output tolerances are minimized by using a low current part for VR1
- Primary clamp losses are minimized by keeping the voltage reflected across the transformer $\left(\mathrm{V}_{\mathrm{OR}}\right)$ low
- Picking wire sizes that fill each winding layer produce transformers with the lowest leakage inductance
- Putting the floating shield winding between the primary and secondary windings reduces EMI noise
- A high gain opto-coupler (CTR $=200-400)$ keeps the CC portion of the output curve more vertical
- R10 should equal the output cable resistance value

Figure 2. No-Load Input Power vs. Line Voltage.

Figure 3. 6.0 VDC, 800 mA CV/CC Curve.

TRANSFORMER PARAMETERS	
Core Material	EE16, TDK PC40, or equivalent A_{L} of $127.5 \mathrm{nH} / \mathrm{T}^{2}$
Bobbin	EE16, 10 pin
Winding Order (pin numbers)	Core shield (1-3), tape Primary (1-2), tape Shield (1-floating), tape Secondary (10-9), tape
Primary Inductance	$1.25 \mathrm{mH} \pm 10 \%$
Primary Resonant Frequency	500 kHz (minimum)
Leakage Inductance	35 HH (maximum)

Table 1. Transformer Construction Information.

For the latest updates, visit our Web site: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others. The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at $w w w$.powerint.com.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch and EcoSmart are registered trademarks of Power Integrations. PI Expert and DPA-Switch are trademarks of Power Integrations. ©Copyright 2003, Power Integrations.

WORLD HEADQUARTERS	CHINA (SHENZHEN)	ITALY	SINGAPORE (ASIA PACIFIC HQ)
Power Integrations, Inc.	Power Integrations Intl. Holdings, Inc.	Power Integrations S.r.I.	Power Integrations Singapore Pte. Ltd.
San Jose, CA, USA	Shenzhen, China	Milano, Italy	Singapore
Phone: +1 408-414-9200	Phone: $\quad+86-755-8367-5143$	Phone: +39-028-928-6001	Phone: +65-6358-2160
AMERICAS	GERMANY	JAPAN	TAIWAN
Power Integrations, Inc.	Power Integrations GmbH	Power Integrations, K.K.	Power Integrations Intl. Holdings, Inc.
Buford, GA, USA	Munich, Germany	Kanagawa, Japan	Taipei, Taiwan
Phone: $\quad+1$ 678-714-6033	Phone: +49-895-527-3910	Phone: $\quad+81-45-471-1021$	Phone: +886-2-2727-1221
CHINA (SHANGHAI)	INDIA (TECHNICAL SUPPORT)	KOREA	UK (EUROPE \& AFRICA HQ)
Power Integrations Intl. Holdings, Inc.	Innovatech	Power Integrations Intl. Holdings, Inc.	Power Integrations (Europe) Ltd.
Shanghai, China	Bangalore, India	Seoul, Korea	Bracknell, Berkshire, United Kingdom
Phone: $\quad+86-21-6215-5548$	Phone: $\quad+91-80-226-6023$	Phone: + 82-2-782-2840	Phone: $\quad+44-1344-462-300$
APPLICATIONS HOTLINE Phone: +1 408-414-9660 Fax: $\quad+1$ 408-414-9760	CUSTOMER SERVICE Phone: +1 408-414-9665 Fax: $\quad+1$ 408-414-9765	For a complete list of our Worldwide Sales Representatives \& Distributors visit our Web site: www.powerint.com	

