Product Preview **Dual General Purpose Transistors** NPN/PNP Dual (Complimentary)

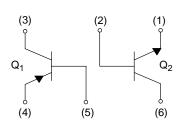
This transistor is designed for general purpose amplifier applications. It is housed in the SOT–563 which is designed for low power surface mount applications.

- Lead–Free Solder Plating
- Low $V_{CE(SAT)}$, < 0.5 V

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	-60	V
Collector-Base Voltage	V _{CBO}	-50	V
Emitter-Base Voltage	V _{EBO}	-6.0	V
Collector Current – Continuous	Ι _C	-100	mAdc

THERMAL CHARACTERISTICS


Characteristic (One Junction Heated)	Symbol	Max	Unit
, ,			• • • • • •
Total Device Dissipation $T_A = 25^{\circ}C$	PD	357 (Note 1)	mW
Derate above 25°C		(Note 1) 2.9 (Note 1)	m₩/°C
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	350 (Note 1)	°C/W
Characteristic			
(Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^{\circ}C$	PD	500	mW
Derate above 25°C		(Note 1) 4.0	mW/°C
Defate above 25 C		(Note 1)	
Thermal Resistance,	R_{\thetaJA}	250	°C/W
Junction-to-Ambient		(Note 1)	
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

1. FR-4 @ Minimum Pad.

ON Semiconductor®

http://onsemi.com

CASE 463A PLASTIC

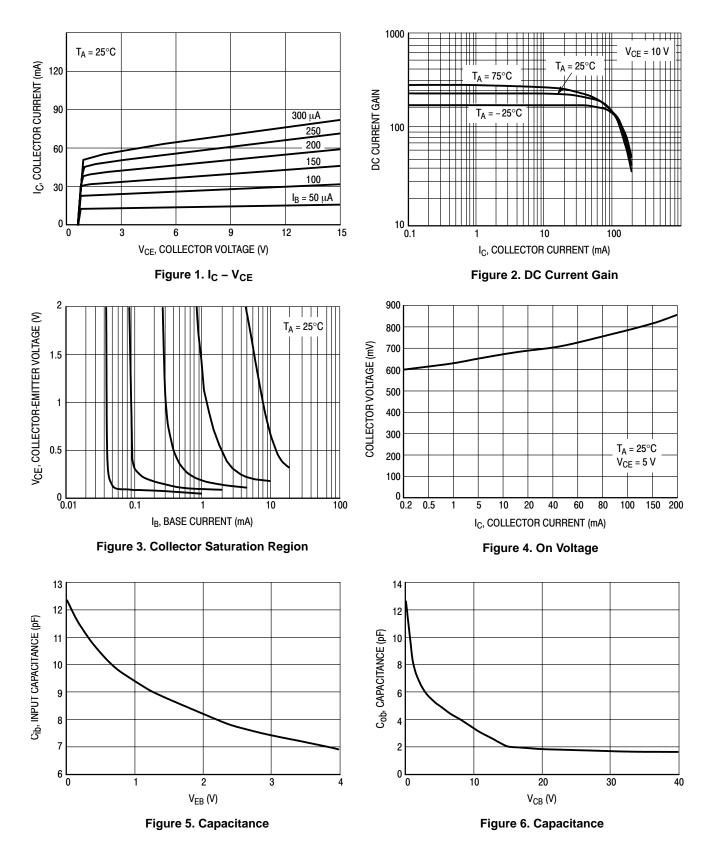
MARKING DIAGRAM

3Z = Specific Device Code D = Date Code

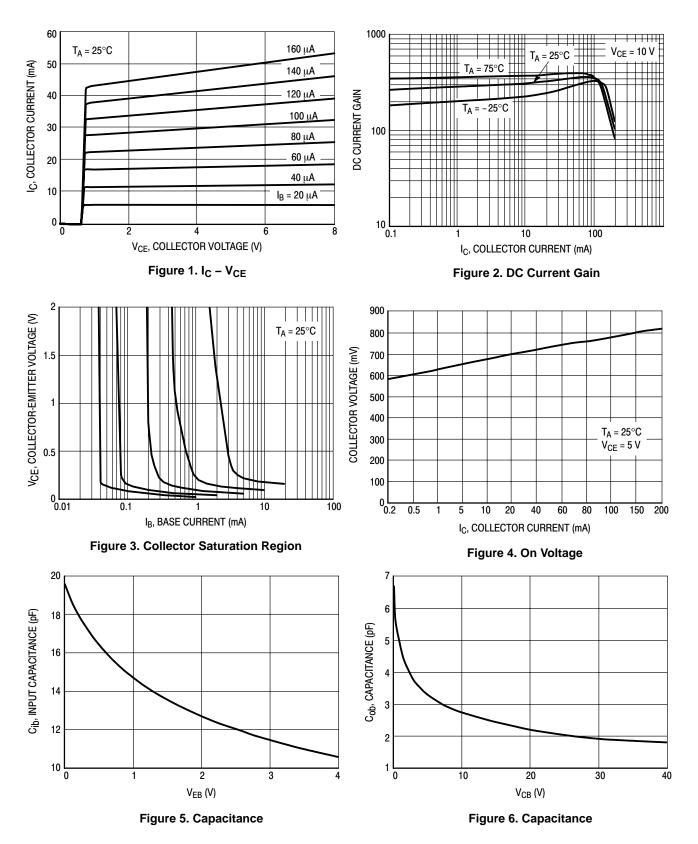
ORDERING INFORMATION

Device	Package	Shipping†
EMZ1DXV6T1	SOT-563	4 mm Pitch 4000/Tape & Reel
EMZ1DXV6T5	SOT-563	2 mm Pitch 8000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

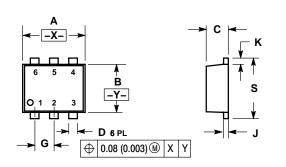

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$)


Characteristic	Symbol	Min	Тур	Max	Unit
Q1: PNP					
Collector–Base Breakdown Voltage ($I_C = -50 \ \mu Adc$, $I_E = 0$)	V _{(BR)CBO}	-60	_	-	Vdc
Collector–Emitter Breakdown Voltage ($I_C = -1.0 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	-50	-	_	Vdc
Emitter–Base Breakdown Voltage ($I_E = -50 \ \mu Adc$, $I_E = 0$)	V _{(BR)EBO}	-6.0	-	_	Vdc
Collector–Base Cutoff Current ($V_{CB} = -30$ Vdc, $I_E = 0$)	I _{CBO}	-	-	-0.5	nA
Emitter–Base Cutoff Current ($V_{EB} = -5.0 \text{ Vdc}$, $I_B = 0$)	I _{EBO}	-	-	-0.5	μΑ
Collector–Emitter Saturation Voltage (Note 4) ($I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc}$)		_	_	-0.5	Vdc
DC Current Gain (Note 4) ($V_{CE} = -6.0 \text{ Vdc}, I_C = -1.0 \text{ mAdc}$)	h _{FE}	120	_	560	-
Transition Frequency ($V_{CE} = -12$ Vdc, $I_C = -2.0$ mAdc, f = 30 MHz)	f _T	_	140	-	MHz
Output Capacitance ($V_{CB} = -12$ Vdc, $I_E = 0$ Adc, f = 1 MHz)	C _{OB}	-	3.5	-	pF
Q2: NPN					
Collector-Base Breakdown Voltage (I _C = 50 μ Adc, I _E = 0)	V _{(BR)CBO}	60	-	_	Vdc
Collector-Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	50	-	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 50 \ \mu Adc$, $I_E = 0$)	V _{(BR)EBO}	7.0	_	-	Vdc
Collector-Base Cutoff Current ($V_{CB} = 60$ Vdc, $I_E = 0$)	I _{CBO}	-	-	0.5	μΑ
Emitter-Base Cutoff Current ($V_{EB} = 7.0 \text{ Vdc}, I_B = 0$)	I _{EBO}	-	-	0.5	μΑ
Collector-Emitter Saturation Voltage ⁽²⁾ ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	V _{CE(sat)}	_	_	0.4	Vdc
DC Current Gain ⁽²⁾ ($V_{CE} = 6.0 \text{ Vdc}, I_C = 1.0 \text{ mAdc}$)	h _{FE}	120	_	560	-
Transition Frequency (V_{CE} = 12 Vdc, I_C = 2.0 mAdc, f = 30 MHz)	f _T	-	180	_	MHz
Output Capacitance (V_{CB} = 12 Vdc, I_C = 0 Adc, f = 1 MHz)	C _{OB}	-	2.0	-	pF

Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.
 Pulse Test: Pulse Width ≤ 300 μs, D.C. ≤ 2%.
 Pulse Test: Pulse Width ≤ 300 μs, D.C. ≤ 2%.

TYPICAL ELECTRICAL CHARACTERISTICS – Q1, PNP

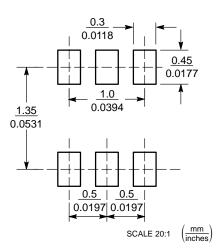


TYPICAL ELECTRICAL CHARACTERISTICS – Q2, NPN

PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A-01 **ISSUE A**

NOTES:


NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IN THICKNESS.

	KNESS IS		INIMUM	THICKN	ES
	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Δ	1 50	1 70	0.059	0.067	

DIM	MIN	MAX	MIN	MAX	
Α	1.50	1.70	0.059	0.067	
В	1.10 1.30		0.043	0.051	
С	0.50	0.60	0.020	0.024	
D	0.17	0.27	0.007	0.011	
G	0.50 BSC		0.020	BSC	
J	0.08	0.18	0.003	0.007	
κ	0.10	0.30	0.004	0.012	
S	1.50	1.70	0.059	0.067	

STYLE 1: PIN 1. EMITTER 1 2. BASE 1 3. COLLECTOR 2 4. EMITTER 2 5. BASE 2 6. COLLECTOR 1

SOLDER FOOTPRINT*

*For information on soldering specifications, please refer to our Soldering Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be rokided in each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in which the Folluce Toroduct could create a situation where personal nipury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use pays that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.