
FJY4014R PNP Epitaxial Silicon Transistor

Features

- Switching circuit, Inverter, Interface circuit, Driver Circuit
- Built in bias Resistor (R₁=4.7KΩ, R₂=47KΩ)
- Complement to FJY3014R

Absolute Maximum Ratings * T_a = 25°C unless otherwise noted

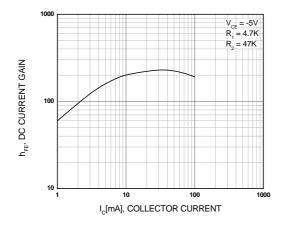
Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	-50	V
V _{CEO}	Collector-Emitter Voltage	-50	V
V _{EBO}	Emitter-Base Voltage	-10	V
I _C	Collector Current	-100	mA
T _{STG}	Storage Temperature Range	-55~150	°C
TJ	Junction Temperature	150	°C
P _C	Collector Power Dissipation, by $R_{\theta JA}$	200	mW

These ratings are limiting values above which the serviceability of any semiconductor device may by impaired.

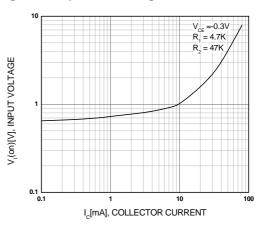
Thermal Characteristics* Ta=25°C unless otherwise noted

Symbol	Parameter	Мах	Units
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	600	°C/W

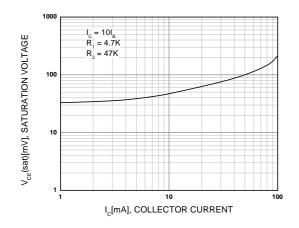
* Minimum land pad size.

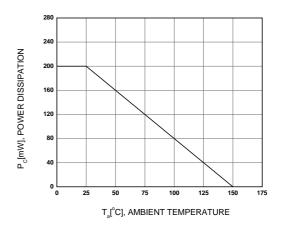

Electrical Characteristics* T_c = 25°C unless otherwise noted

Symbol	Parameter	Test Condition	MIN	Тур	MAX	Units
V(BR)CBO	Collector-Emitter Breakdown Voltage	Ic = -10 uA, IE = 0	-50			V
V(BR)CEO	Collector-Base Breakdown Voltage	Ic = -100 uA, I _B = 0	-50			V
ICBO Collector-Cutoff Current		V _{CB} = -40 V, I _E = 0			-0.1	uA
hfe	DC Current Gain	Vce = -5 V, Ic = -5mA	68			
Vce(sat)	Collector-Emitter Saturation Voltage	Ic = -10 mA, I _B = -0.5 mA			-0.3	V
f⊤	Current Gain - Bandwidth Product	Vce = -10V, Ic = -5 mA		200		MHz
Ccb	Output Capacitance	V _{CB} = -10 V, I _E = 0, f = 1.0 MHz		5.5		pF
VI(off)	Input Off Voltage	Vce = -5 V, Ic = -100uA	-0.5			V
VI(on)	Input On Voltage	Vce = -0.2V, Ic = -5mA			-1.3	V
R1	Input Resistor		3.2	4.7	6.2	KΩ
R1/R2	Resistor Ratio		0.09	0.1	0.11	
Pulse Test: PW≤3	300μs, Duty Cycle≤2%	-				


November 2006

Typical Performance Characteristics


Figure 1. DC current Gain


Figure 2. Input On Voltage

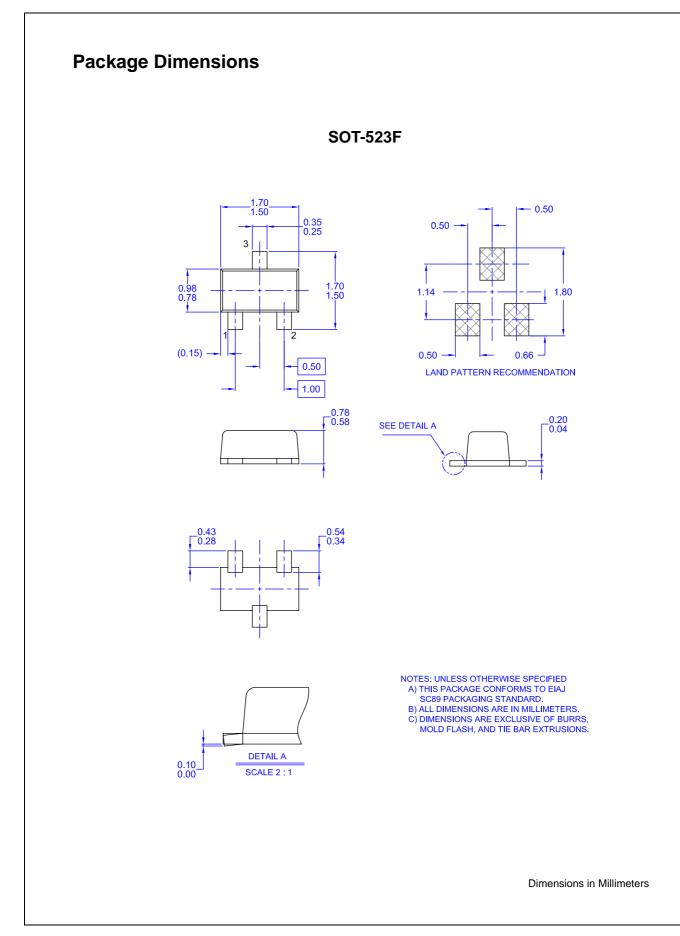


Figure 3. Collector-Emitter Saturation Voltage

Figure 4. Power Derating

SEMICONDUCTOR

FAIRCHILD SEMICONDUCTOR TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	OCX™	SILENT SWITCHER [®]	UniFET™
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™	VCX™
Bottomless™	GTO™	OPTOLOGIC [®]	SPM™	Wire™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™	
CoolFET™	I ² C™	PACMAN™	SuperFET™	
CROSSVOLT™	<i>i-Lo</i> ™	POP™	SuperSOT™-3	
DOME™	ImpliedDisconnect [™]	Power247™	SuperSOT™-6	
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8	
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™	
EnSigna™	LittleFET™	PowerTrench [®]	TCM™	
FACT [®]	MICROCOUPLER™	QFET [®]	TinyBoost™	
FAST®	MicroFET™	QS™	TinyBuck™	
FASTr™	MicroPak™	QT Optoelectronics [™]	TinyPWM™	
FPS™	MICROWIRE™	Quiet Series™	TinyPower™	
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]	
	MSXPro™	RapidConnect™	TINYOPTO™	
Across the board. A	round the world.™	µSerDes™	TruTranslation™	
The Power Franchis	se [®]	ScalarPump™	UHC [®]	
Programmable Activ	e Droon™			

Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.