## PECL Input OSCaR ${ }^{\text {TM }}$ User Configurable Clock

## Description

The ICS525-03 are the most flexible way to generate a high-quality, high-accuracy, high-frequency clock output from a PECL input. The name OSCaR stands for OSCillator Replacement, as they are designed to replace crystal oscillators in almost any electronic system. The user can configure the device to produce nearly any output frequency from any input frequency by grounding or floating the select pins. Neither microcontroller, software, nor device programmer are needed to set the frequency. Using Phase-Locked Loop (PLL) techniques, the device accepts a PECL clock to produce output clocks up to 250 MHz , keeping them frequency locked together. Resistors are for PECL outputs only.
For simple multipliers to produce common frequencies, refer to the LOCO ${ }^{\text {TM }}$ family of parts, which are smaller and more cost effective.
This product is intended for clock generation. It has low output jitter (variation in the output period), but input to output skew and jitter are not defined nor guaranteed.

## Features

- Packaged as 28 -pin SSOP (150 mil body)
- Highly accurate frequency generation
- User determines the output frequency by setting all internal dividers
- Eliminates need for custom oscillators
- No software needed
- Pull-ups on all select inputs
- PECL input clock frequency of 0.5 to 250 MHz
- Output clock frequencies up to 250 MHz
- Very low jitter
- Operating voltage of 3.0 V or 5.5 V
- 25 mA drive capability at TTL levels
- Ideal for oscillator replacement
- Industrial temperature
- Available in Pb (lead) free package
- Advanced, low-power CMOS process


## Block Diagram



## Pin Assignment



RES Value Table

| RES | CLK1 | CLK2 | Pre-divide (P) |
| :---: | :---: | :---: | :---: |
| 0 | CMOS | CMOS | 2 |
| $1.1 \mathrm{k} \Omega$ Resistor <br> to VDD | PECL | PECL | 1 |

Output Divider and Maximum Output Frequency Table

| S0 | S1 | S2 | CLK | Max. Output Frequency (MHz) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pin 5 | pin 4 | $\operatorname{pin} 3$ | Output Divider <br> (OD) | VDD $=5 \mathrm{~V}$ |  | VDD = 3.3 V |  |
|  |  |  |  | RES = 1.1 k $\Omega$ | RES = 0 | RES $=1.1 \mathrm{k} \Omega$ |  |
| 0 | 0 | 0 | 6 | 67 | 34 | 40 | 20 |
| 0 | 0 | 1 | 2 | 200 | 100 | 120 | 60 |
| 0 | 1 | 0 | 8 | 50 | 25 | 30 | 15 |
| 0 | 1 | 1 | 4 | 100 | 50 | 60 | 30 |
| 1 | 0 | 0 | 5 | 80 | 40 | 48 | 24 |
| 1 | 0 | 1 | 7 | 57 | 29 | 34 | 17 |
| 1 | 1 | 0 | 1 | 250 | 200 | 200 | 125 |
| 1 | 1 | 1 | 3 | 133 | 80 | 80 | 40 |

Note: 0 = connect directly to ground; 1 = connect directly to VDD.

## Pin Descriptions

| Pin <br> Number | Pin <br> Name | Pin <br> Type | Pin Description |
| :---: | :---: | :---: | :--- |
| 1,2, <br> $24-28$ | R5, R6, <br> R0-R4 | I(PU) | Reference divider word input pins determined by user. Forms a binary <br> number from 0 to 127. |
| $3,4,5$ | S0, S1, S2 | I(PU) | Select pins for output divider determined by user. See table above. |
| 6,23 | VDD | Power | Connect to VDD. |
| 7 | PECLIN | Input | PECL input. |
| 8 | PECLIN | Input | Complementary PECL input. |
| 9,20 | GND | Power | Connect to ground. |
| $10-18$ | V0 - V8 | I(PU) | VCO divider word input pins determined by user. Forms a binary number from <br> 0 to 511. |
| 19 | RES | Input | Select eithe PECL or CMOS outputs. See table above. |
| 21 | CLK1 | Output | Output clock. Either PECL or CMOS determined by RES. |
| 22 | CLK2 | Output | Output clock. Either PECL or CMOS determined by RES. |

KEY: $I(P U)=$ Input with internal pull-up resistor.

## Output Clock Selection

If RES is connected directly to ground, CLK1 and CLK2 are low skew, CMOS outputs clocks. They are not complementary. If RES is connected to VDD through a $1.1 \mathrm{k} \Omega$ resistor, then CLK1 and CLK2 become complementary PECL outputs which require the external resistor network shown in the the block diagram. Refer to Application Note MAN09 for additional information.

## External Components/Crystal Selection

## Decoupling Capacitors

The ICS525-03 requries two 0.01 $\mu \mathrm{F}$ decoupling capacitors to be connected between VDD and GND, one on each side of the chip. The capacitor must be connected close to the device to minimize lead inductance. No external power supply filtering is required for this device.

## External Resistors

If PECL outputs are desired, RES should be tied to VDD with a $1.1 \mathrm{k} \Omega$ resistor. Each output needs a resistive network of $62 \Omega$ and $270 \Omega$ per the block diagram on page 1. Application note MAN09 gives more information about resistor selection.

## Determining (setting) the Output Frequency

Users have full control in setting the desired output frequency over the range shown in the table on page 2. To replace a standard oscillator, users should connect the divider select input pins directly to ground (or VDD, although this is not required because of internal pull-ups) during Printed Circuit Board layout. The ICS525-03 will automatically produce the correct clock when all components are soldered. It is also possible to connect the inputs to parallel I/O ports to switch frequencies. By choosing divides carefully, the number of inputs which need to be changed can be minimized. Observe the restrictions on allowed values of VDW and RDW.
The output of the ICS525-03 can be determined by the following simple equation:

$$
C L K \text { Frequency }=\text { Input Frequency } \times P \times \frac{(V D W+8)}{(R D W+2) \bullet O D}
$$

Where:
Reference Divider Word (RDW) = 0 to 127
VCO Divider Word (VDW) $=0$ to 511
Output Divider (OD) = values on page 2
Pre-divide $(\mathrm{P})=$ values on page 2 under RES Value Table

Also, the following operating ranges should be observed:

$$
\begin{aligned}
& 10 \mathrm{MHz}<\text { Input frequency } \times \mathrm{P} \times \frac{(\mathrm{VDW}+8)}{(\mathrm{RDW}+2)}<350 \mathrm{MHz} \text { at } 5.0 \mathrm{~V} \text { or } \\
& <250 \mathrm{MHz} \text { at } 3.3 \mathrm{~V} \\
& 200 \mathrm{kHz}<\frac{\text { Input Frequency }}{(\mathrm{RDW}+2)}
\end{aligned}
$$

(See table on page 2 for full details of maximum output)
The dividers are expressed as integers, so that if a 66.66 MHz PECL output is desired from a 14.31818 PECL input, the Reference Divider Word (RDW) should be 59 and the VCO Divider Word (VDW) should be 276, with an Output Divider (OD) of 1. To select PECL outputs, the RES pin should be tied to VDD with a $1.1 \mathrm{k} \Omega$ resistor.

In this example, R6:R0 is 100010100, and S2:S0 is 110. Since all of these inputs have pull-up reistors, it is only necessary to ground the zero pins, namely $\mathrm{V} 7, \mathrm{~V} 6$, V5, V3, V1, V0, R6, R2 and S0.
To determine the best combination of VCO, reference, and output divide, use the ICS525 Calculator on our web site:
www.icst.com/products/ics525inputForm.html. The online form is easy to use and quickly shows you up to three options for these settings. Alternately, you may send an e-mail to ics-mk@icst.com.

## Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS525-03. These ratings, which are standard values for ICS commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

| Item | Rating |
| :--- | :--- |
| Supply Voltage, VDD | 7 V |
| All Inputs and Outputs | -0.5 V to $\mathrm{VDD}+0.5 \mathrm{~V}$ |
| Ambient Operating Temperature, Industrial | -40 to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Junction Temperature | $125^{\circ} \mathrm{C}$ |
| Soldering Temperature | $260^{\circ} \mathrm{C}$ (max. of 10 seconds) |

## DC Electrical Characteristics

Unless stated otherwise, VDD = 3.3 V

| Parameter | Symbol | Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating Voltage | VDD |  | 3.0 |  | 5.5 | V |
| Operating Supply Current | IDD | 60 MHz out, no load |  | 15 |  | mA |
| Operating Supply Current, LVPECL mode | IDD | With termination resistors |  | 35 |  | mA |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ |  | 2 |  |  | V |
| Input Low Voltage | $\mathrm{V}_{\text {IL }}$ |  |  |  | 0.8 | V |
| Peak-to-peak Input Voltage |  | PECLIN, $\overline{\text { PECLIN }}$ | 0.3 |  | 1 | V |
| Common Mode Range |  | PECLIN, $\overline{\text { PECLIN }}$ | VDD-1.4 |  | VDD-0.6 |  |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-25 \mathrm{~mA}, \mathrm{CMOS} \\ & \text { out } \end{aligned}$ | 2.4 |  |  | V |
| Output Low Voltage | $\mathrm{V}_{\text {OL }}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA}, \mathrm{CMOS} \\ & \text { out } \end{aligned}$ |  |  | 0.4 | V |
| Short Circuit Current |  | CMOS out |  | $\pm 70$ |  | mA |
| Input Capacitance | $\mathrm{C}_{\text {IN }}$ | V, R, S select pins |  | 4 |  | pF |
| On-chip Pull-up Resistor | $\mathrm{R}_{\mathrm{PU}}$ | V, R, S select pins |  | 270 |  | $\mathrm{k} \Omega$ |

## AC Electrical Characteristics

Unless stated otherwise, VDD = $\mathbf{3 . 3} \mathbf{V}$

| Parameter | Symbol | Conditions | Min. | Typ. | Max. | Units |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: |
| Input Frequency | $\mathrm{F}_{\text {IN }}$ | Clock input | 0.5 |  | 250 | MHz |
| Output Frequency, VDD $=4.5$ to <br> 5 V | $\mathrm{F}_{\text {OUT }}$ | OD =1 | 1 |  | 250 | MHz |
| Output Frequency, VDD=3.0 to <br> 3.6 V | $\mathrm{F}_{\text {OUT }}$ | OD =1 | 1 |  | 200 | MHz |
| Output Clock Rise Time, CMOS <br> clock |  | 0.8 to 2.0 V |  | 1 |  | ns |
| Output Clock Fall Time, CMOS <br> clock | 2.0 to 0.8 V |  | 1 |  | ns |  |
| Output Clock Duty Cycle, even <br> output dividers |  | at VDD/2 | 45 |  | 55 | $\%$ |
| Output Clock Duty Cycle, odd <br> output dividers | at VDD/2 | 40 |  | 60 | $\%$ |  |
| Absolute Clock Period Jitter | $\mathrm{t}_{\mathrm{ja}}$ | Deviation from mean |  | $\pm 350$ |  | ps |
| One Sigma Clock Period Jitter | $\mathrm{t}_{\mathrm{js}}$ | One Sigma |  | 125 |  | ps |

## Package Outline and Package Dimensions (28-pin SSOP, 150 mil Body)

Package dimensions are kept current with JEDEC Publication No. 95, MO-153


## Ordering Information

| Part / Order Number | Marking | Shipping Packaging | Package | Temperature |
| :---: | :---: | :---: | :---: | :---: |
| ICS525R-03I | ICS525R-03I | Tubes | 28 -pin SSOP | -40 to $+85^{\circ} \mathrm{C}$ |
| ICS525R-03IT | ICS525R-03I | Tape and Reel | 28 -pin SSOP | -40 to $+85^{\circ} \mathrm{C}$ |
| ICS525R-03ILF | ICS525R-03ILF | Tubes | 28 -pin SSOP | -40 to $+85^{\circ} \mathrm{C}$ |
| ICS525R-03ILFT | ICS525R-03ILF | Tape and Reel | 28 -pin SSOP | -40 to $+85^{\circ} \mathrm{C}$ |

Parts that are ordered with a "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments

