PD - 90709B

International **ISR** Rectifier **POWER MOSFET THRU-HOLE (TO-254AA)**

Product Summary

Part Number	RDS(on)	ld
IRFM054	0.027 Ω	35A*

HEXFET® MOSFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

IRFM054 60V, N-CHANNEL HEXFET[®] MOSFET TECHNOLOGY

Features:

- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Dynamic dv/dt Rating
- Light-weight

	Parameter		Units	
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	35*		
ID @ VGS = 10V, TC = 100°C Continuous Drain Current		35*	A	
IDM	Pulsed Drain Current ①	220		
P _D @ T _C = 25°C	Max. Power Dissipation	150	W	
	Linear Derating Factor	1.2	W/°C	
VGS	Gate-to-Source Voltage	±20	V	
EAS	Single Pulse Avalanche Energy 2	480	mJ	
IAR	Avalanche Current ①	_	Α	
EAR	Repetitive Avalanche Energy ①	_	mJ	
dv/dt	Peak Diode Recovery dv/dt 3	4.5	V/ns	
Тј	Operating Junction	-55 to 150		
TSTG	Storage Temperature Range		°C	
	Lead Temperature	300 (0.063 in.(1.6mm) from case for 10s)		
	Weight	9.3 (Typical)	g	

Absolute Maximum Ratings

*Current is limited by pin diameter For footnotes refer to the last page

International **TOR** Rectifier

Parameter Min Max Units **Test Conditions** Тур Drain-to-Source Breakdown Voltage 60 V VGS = 0V, ID = 1.0mA BVDSS V/°C Reference to 25°C, ID = 1.0mA ∆BV_{DSS}/∆TJ Temperature Coefficient of Breakdown 0.68 _ Voltage Static Drain-to-Source On-State 0.027 VGS = 10V, ID = 35A (4) RDS(on) Ω ____ ____ Resistance Gate Threshold Voltage 4.0 ٧ $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ VGS(th) 2.0 ____ Forward Transconductance 20 S (ひ) VDS > 15V, IDS = 35A ④ 9fs Zero Gate Voltage Drain Current 25 VDS= 48V ,VGS=0V IDSS μΑ 250 VDS = 48V, $V_{GS} = 0V, T_J = 125^{\circ}C$ VGS = 20V Gate-to-Source Leakage Forward 100 IGSS — nA Gate-to-Source Leakage Reverse -100 $V_{GS} = -20V$ IGSS _ _ 180 VGS =10V, ID = 35A Qg Total Gate Charge _ _ Qgs Gate-to-Source Charge 45 nC VDS = 30V___ ___ Gate-to-Drain ('Miller') Charge 105 Qgd Turn-On Delay Time 33 $V_{DD} = 30V, I_D = 35A,$ td(on) ____ _ Rise Time 180 $V_{GS} = 10V, R_{G} = 2.35\Omega$ tr _ ns ^td(off) Turn-Off Delay Time 100 Fall Time 100 tf Total Inductance Ls+LD 6.8 Measured from drain lead (6mm/ ____ nH 0.25in. from package) to source lead (6mm/0.25in. from package) Input Capacitance 4600 $V_{GS} = 0V, V_{DS} = 25V$ Ciss ____ _ f = 1.0MHz**Output Capacitance** 2000 pF Coss Crss Reverse Transfer Capacitance 340 ____ _

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter	Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Diode)	—	—	35*	Α	
ISM	Pulse Source Current (Body Diode) ①	—	—	220		
VSD	Diode Forward Voltage	—	—	2.5	V	Tj = 25°C, IS = 35A, VGS = 0V ④
t _{rr}	Reverse Recovery Time		-	280	nS	Tj = 25°C, IF = 35A, di/dt \leq 100A/ μ s
QRR	Reverse Recovery Charge		—	2.2	μC	V _{DD} ≤ 50V ④
ton	Forward Turn-On Time Intrinsic turn-	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.				

*Current is limited by pin diameter

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	-	—	0.83		
RthJCS	Case-to-Sink	—	0.21	—	°C/W	
R _{th} JA	Junction-to-Ambient	-	—	48		Typical socket mount

Note: Corresponding Spice and Saber models are available on the G&S Website.

For footnotes refer to the last page

International

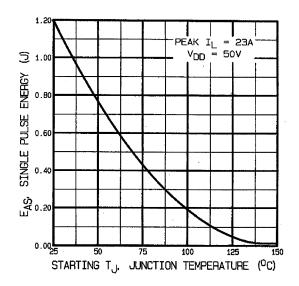


Fig 1. Typical Output Characteristics

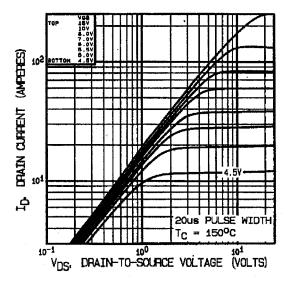


Fig 2. Typical Output Characteristics

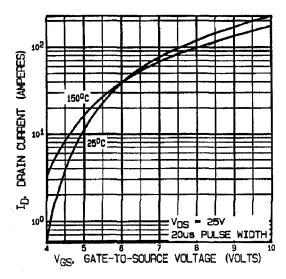
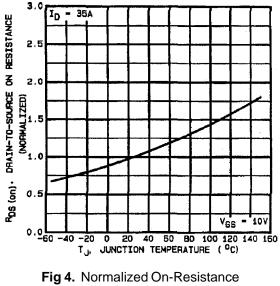



Fig 3. Typical Transfer Characteristics

Vs. Temperature

International **ICR** Rectifier

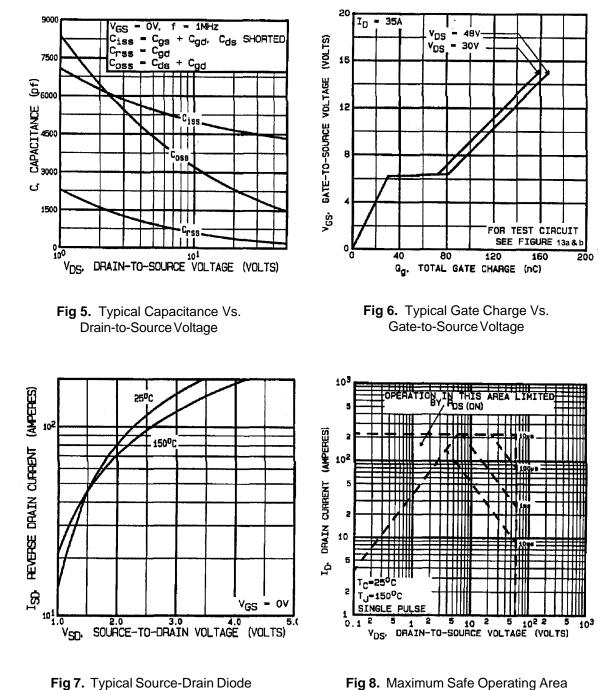
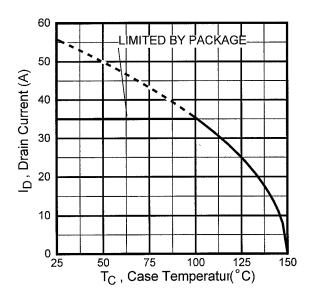
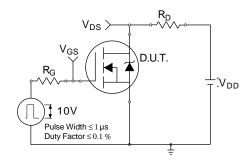
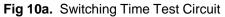



Fig 8. Maximum Safe Operating Area


www.irf.com


Forward Voltage

International

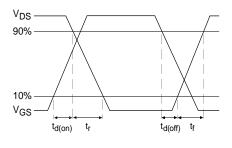
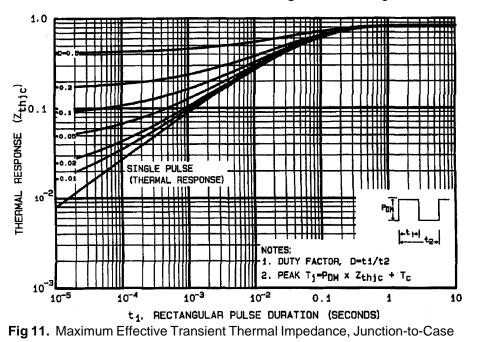



Fig 10b. Switching Time Waveforms

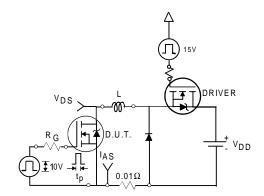


Fig 12a. Unclamped Inductive Test Circuit

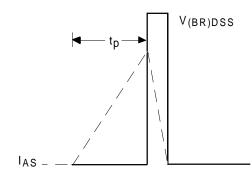


Fig 12b. Unclamped Inductive Waveforms

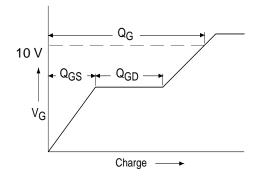


Fig 13a. Basic Gate Charge Waveform

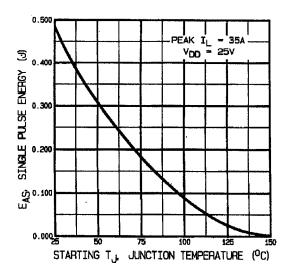


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

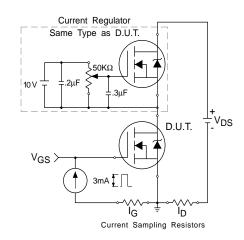
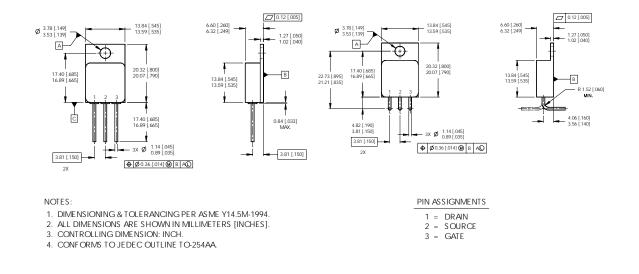


Fig 13b. Gate Charge Test Circuit

International


Footnotes:

① Repetitive Rating; Pulse width limited by maximum junction temperature.

 \odot VDD = 25V, starting TJ = 25°C, L= 0.78mH Peak IL = 35A, VGS = 10V

- ④ Pulse width \leq 300 $\mu s;$ Duty Cycle \leq 2%

Case Outline and Dimensions — TO-254AA

CAUTION BERYLLIA WARNING PER MIL-PRF-19500

Packages containing beryllia shall not be ground, sandblasted, machined or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 01/02