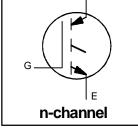
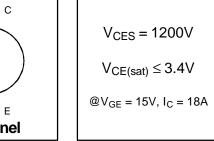
Preliminary Data Sheet PD - 9.1029

International IOR Rectifier


IRGPH40M

TO-247AC


INSULATED GATE BIPOLAR TRANSISTOR

Features

- Short circuit rated 10µs @ 125°C, V $_{GE}$ = 15V
- Switching-loss rating includes all "tail" losses
- Optimized for medium operating frequency (1 to 10kHz)

Short Circuit Rated Fast IGBT

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications.

These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability.

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{CES}	Collector-to-Emitter Voltage	1200	V	
I _C @ T _C = 25°C	Continuous Collector Current	31		
I _C @ T _C = 100°C	Continuous Collector Current	18	A	
I _{CM}	Pulsed Collector Current ①	62		
I _{LM}	Clamped Inductive Load Current ②	62		
t _{sc}	Short Circuit Withstand Time	10	μs	
V _{GE}	Gate-to-Emitter Voltage	±20	V	
E _{ARV}	Reverse Voltage Avalanche Energy 3	15	mJ	
P _D @ T _C = 25°C	Maximum Power Dissipation	160	W	
P _D @ T _C = 100°C	Maximum Power Dissipation	65		
TJ	Operating Junction and	-55 to +150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)		
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case	—	—	0.77	
R _{0CS}	Case-to-Sink, flat, greased surface	—	0.24	—	°C/W
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount	—	—	40	
Wt	Weight	—	6 (0.21)		g (oz)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200			V	$V_{GE} = 0V, I_{C} = 250\mu A$	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage ④	20	-		V	$V_{GE} = 0V, I_{C} = 1.0A$	
$\Delta V_{(BR)CES} / \Delta T_J$	Temperature Coeff. of Breakdown Voltage		1.1		V/°C	$V_{GE} = 0V, I_{C} = 1.0mA$	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage		2.3	3.4		I _C = 18A	
		_	3.0		V	I _C = 31A V _{GE} = 15V	
		_	2.8			I _C = 18A, T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0	-	5.5		$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	
$\Delta V_{GE(th)}/\Delta T_J$	Temperature Coeff. of Threshold Voltage	-	-14	_	mV/°C	$V_{CE} = V_{GE}, I_C = 250 \mu A$	
g fe	Forward Transconductance (5)	4.0	10	-	S	V _{CE} = 100V, I _C = 18A	
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μA	$V_{GE} = 0V, V_{CE} = 1200V$	
			—	3500	ſ	$V_{GE} = 0V, V_{CE} = 1200V, T_{J} = 150^{\circ}C$	
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	$V_{GE} = \pm 20V$	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge (turn-on)	-	50	75		I _C = 18A
Q _{ge}	Gate - Emitter Charge (turn-on)	—	11	21	nC	$V_{CC} = 400V$
Q _{gc}	Gate - Collector Charge (turn-on)	-	15	30		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time	—	30	-		$T_J = 25^{\circ}C$
tr	Rise Time	—	21	_	ns	$I_{C} = 18A, V_{CC} = 960V$
t _{d(off)}	Turn-Off Delay Time	—	400	890		V_{GE} = 15V, R_G = 10 Ω
t _f	Fall Time	—	390	740		Energy losses include "tail"
Eon	Turn-On Switching Loss	-	1.1	_		
E _{off}	Turn-Off Switching Loss	—	6.3	_	mJ	
E _{ts}	Total Switching Loss	-	7.4	14		
t _{sc}	Short Circuit Withstand Time	10			μs	V _{CC} = 720V, T _J = 125°C
						$V_{GE} = 15V, R_G = 10\Omega, V_{CPK} < 1000V$
t _{d(on)}	Turn-On Delay Time	-	28	_		$T_{\rm J} = 150^{\circ}{\rm C},$
tr	Rise Time	—	24	-	ns	$I_{C} = 18A, V_{CC} = 960V$
t _{d(off)}	Turn-Off Delay Time	—	600	_		V_{GE} = 15V, R_G = 10 Ω
t _f	Fall Time	-	870	_		Energy losses include "tail"
Ets	Total Switching Loss	—	15		mJ	
LE	Internal Emitter Inductance	—	13	_	nH	Measured 5mm from package
Cies	Input Capacitance	—	1360	_		V _{GE} = 0V
Coes	Output Capacitance	—	100	—	pF	$V_{CC} = 30V$
C _{res}	Reverse Transfer Capacitance	—	15	_		f = 1.0MHz

Notes:

- O Repetitive rating; V $_{\rm GE} = 20 \text{V},$ pulse width limited by max. junction temperature.
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- S Pulse width 5.0µs, single shot.

- 0 V_{CC}=80%(V_{CES}), V_{GE}=20V, L=10\mu H, R_{G}=10\Omega
- ④ Pulse width \leq 80µs; duty factor \leq 0.1%.

Refer to Section D - page D-13 for Package Outline 3 - JEDEC Outline TO-247AC