DUAL MULTIFUNCTION VOLTAGE REGULATOR

- STANDBYOUTPUTVOLTAGEPRECISION5V $\pm 2 \%$
- OUTPUT2TRACKED TOTHE STANDBY OUTPUT
- OUTPUT 2 DISABLE FUNCTION FOR STANDBY MODE
- VERY LOW QUIESCENT CURRENT, LESS THAN 250 $\mu \mathrm{A}$, IN STANDBY MODE
- OUTPUT CURRENTS : $\mathrm{I}_{01}=50 \mathrm{~mA}, \mathrm{I}_{02}=500 \mathrm{~mA}$
- VERY LOW DROPOUT (max 0.4V/0.6V)
- OPERATING TRANSIENT SUPPLY VOLTAGE UP TO 40V
- POWER-ON RESET CIRCUIT SENSING THE STANDBY OUTPUT VOLTAGE
- POWER-ON RESET DELAY PULSE DEFINED BY THE EXTERNAL CAPACITOR
- THERMALSHUTDOWN AND SHORTCIRCUIT PROTECTIONS

Heptawatt
ORDERING NUMBER : L4937N

DESCRIPTION

The L4937N is a monolithic integrated dual voltage regulatorswith two very low dropout outputsand additional functions such as power-on reset and input voltage sense. It is designed for supplying microcomputer controlled systems specially in automotive applications.

PIN CONNECTION (top view)

BLOCK DIAGRAM

THERMAL DATA

Symbol	Parameter	Value	Unit
$R_{\text {thj-case }}$	Thermal Resistance Junction-Case	Max.	3

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{S}	DC Supply Voltage	28	V
	Transient Supply Voltage $(\mathrm{T}<1 \mathrm{~s})$	40	V
$\mathrm{~T}_{\mathrm{j},}, \mathrm{T}_{\text {stg }}$	Junction and Storage Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {EN }}$	Enable Input Current $\left(\mathrm{V}_{\text {EN }} \leq 0.3 \mathrm{~V}\right)$	± 1	mA
$\mathrm{~V}_{\text {EN }}$	Enable Input Voltage	V_{S}	
$\mathrm{V}_{\text {RES }}$	Reset Output Voltage	20	V
$\mathrm{I}_{\text {RES }}$	Reset Output Current	5	mA
P_{D}	Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}, \mathrm{R}_{\text {th heatsink }}=9^{\circ} \mathrm{C} / \mathrm{W}\right)$	5	W

Note : The circuit is ESD protected according to MIL-STD-883C.

APPLICATION CIRCUIT

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq 125^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{S}	Operating Supply Voltage				25	V
$\mathrm{V}_{\mathrm{O} 1}$	Standby Output Voltage	$\begin{aligned} & 6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 25 \mathrm{~V} \\ & 1 \mathrm{~mA} \leq \mathrm{I}_{01} \leq 50 \mathrm{~mA} \end{aligned}$	4.90	5.00	5.10	V
$\mathrm{V}_{02}-\mathrm{V}_{01}$	Output Voltage 2 Tracking Error (note 1)	$\begin{aligned} & 6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 25 \mathrm{~V} \\ & 5 \mathrm{~mA} \leq \mathrm{loz} \leq 500 \mathrm{~mA} \\ & \text { Enable }=\text { LOW } \end{aligned}$	-25		+25	mV
$\mathrm{V}_{\text {DP1 }}$	Dropout Voltage 1	$\begin{aligned} & \mathrm{l}_{\mathrm{O} 1}=10 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{O}}=50 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{gathered} 0.25 \\ 0.4 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{101}	Input to Output Voltage Difference in Undervoltage Condition	$\mathrm{VS}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 1}=35 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {DP2 }}$	Dropout Voltage 2	$\begin{aligned} & \mathrm{IO} 2=100 \mathrm{~mA} \\ & \mathrm{lo} 2=500 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{102}	Input to Output Voltage Difference in Undervoltage Condition	$\mathrm{VS}=4.6 \mathrm{~V}, \mathrm{l}_{02}=350 \mathrm{~mA}$			0.6	V
$\mathrm{V}_{\text {OL } 1.2}$	Line Regulation	$\begin{aligned} & \mathrm{VV} \leq \mathrm{V}_{\mathrm{S}} \leq 25 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{O} 1}=1 \mathrm{~mA} ; \mathrm{l}_{\mathrm{O} 2}=5 \mathrm{~mA} \end{aligned}$			20	mV
Volo1	Load Regulation 1	$1 \mathrm{~mA} \leq \mathrm{l}_{01} \leq 50 \mathrm{~mA}$			25	mV
Volo2	Load Regulation 2	$5 \mathrm{~mA} \leq \mathrm{l}_{02} \leq 500 \mathrm{~mA}$			50	mV
lıIM1	Current Limit 1	$\begin{aligned} & \mathrm{V}_{\mathrm{O} 1}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O} 1}=0 \mathrm{~V} \text { (note 2) } \end{aligned}$	$\begin{aligned} & 55 \\ & 25 \end{aligned}$	$\begin{gathered} \hline 100 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 200 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
ILIM2	Current Limit 2	$\mathrm{VO} 2=0 \mathrm{~V}$	550	1000	1700	mA
losb	Quiescent Current Standby Mode (output 2 disabled)	$\begin{aligned} & \mathrm{I}_{101}=0.3 \mathrm{~mA} ; \mathrm{T}_{\mathrm{J}}<100^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{EN}} \geq 2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=14 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 210 \\ & 340 \end{aligned}$	$\begin{aligned} & 290 \\ & 850 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
lQ	Quiescent Current	$\begin{aligned} & \mathrm{l}_{01}=50 \mathrm{~mA} \\ & \mathrm{l}_{1}=500 \mathrm{~mA} \end{aligned}$			30	mA

ENABLE

$\mathrm{V}_{\mathrm{ENL}}$	Enable Input LOW Voltage (output 2 active)		-0.3		1.5	V
$\mathrm{~V}_{\mathrm{ENH}}$	Enable Input HIGH Voltage		2.4		7	V
$\mathrm{~V}_{\mathrm{ENhyst}}$	Enable Hysteresis		30	75	200	mV
I_{EN}	Enable Input Current	$0 \mathrm{~V}<\mathrm{V}_{\mathrm{EN}}<1.2 \mathrm{~V}$ 	$2.5 \mathrm{~V}<\mathrm{V}_{\text {EN }}<7 \mathrm{~V}$	-10	-1.5	-0.5
+1	$\mu \mathrm{~A}$					
$\mu \mathrm{~A}$						

ELECTRICAL CHARACTERISTICS (continued)
RESET

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{Rt}	Reset Low Threshold Voltage	$\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}$	$\mathrm{~V}_{01}-0.4$	4.7	$\mathrm{~V}_{01}-0.1$	V
$\mathrm{~V}_{\mathrm{Rth}}$	Reset Threshold Hysteresis		50	100	200	mV
t_{RD}	Reset Pulse Delay	$\mathrm{C}_{\mathrm{T}}=100 \mathrm{nF} ; \mathrm{t}_{\mathrm{R}}>100 \mu \mathrm{~s}$	55	100	180	ms
t_{RR}	Reset Reaction Time	$\mathrm{C}_{T}=100 \mathrm{nF}$	1	10	50	$\mu \mathrm{~s}$
$\mathrm{~V}_{\mathrm{RL}}$	Reset Output LOW Voltage	$\mathrm{R}_{\mathrm{RES}}=10 \mathrm{~K} \Omega$ to $\mathrm{V}_{01} \mathrm{~V}_{\mathrm{S}} \geq 1.5 \mathrm{~V}$			0.4	V
$\mathrm{I}_{\mathrm{LRES}}$	Reset Output HIGH Leakage	$\mathrm{V}_{\mathrm{RES}}=5 \mathrm{~V}$			1	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {CTh }}$	Delay Comparator Threshold			2.0		V
$\mathrm{~V}_{\text {CTth, hyst }}$	Delay Comparator Threshold Hysteresis		100		mV	

Note: $1: \mathrm{V}_{\mathrm{O} 2}$ connected to $\mathrm{ADJ} . \mathrm{V}_{\mathrm{O} 2}$ can be set to higher values by inserting an external resistor divider.
2 : Foldback characteristic

FUNCTIONAL DESCRIPTION

The L4937N is based on the SGS-THOMSON Microelectronics modular voltage regulator approach. Several out-standing features and auxiliary functions are provided to meet the requirements of supplying the microprocessor systems used in automotive applications.
Furthermore the device is suitable also in other applications requiring two stabilized voltages.
The modular approach allows other features and functions to be realized easily when required.

STANDBY REGULATOR

The standby regulator uses an Isolated Collector Vertical PNP transistor as the regulating element. This structure allows a very low dropout voltage at currents up to 50 mA . The dropout operation of the standby regulator is maintained down to 2 V input supply voltage. The output voltage is regulated up to the transient input supplyvoltage of 40 V . This feature avoids functional interruptions which could be generated by overvoltage pulses.

The typical curve of the standby output voltage as a function of the input supply voltage is shownin fig. 1.

The current consumption of the device (quiescent current) is less than $250 \mu \mathrm{~A}$ when output 2 is disabled (standby mode). The dropout voltage is controlled to reduce the quiescent current peak in the undervoltage region and to improve the transient response in this region.
Thequiescent current is shown in fig. 2 as a function of the supply input voltage 2.

OUTPUT 2 VOLTAGE

The output 2 regulator uses the same output structure as the standby regulator, but rated for an output current of 500 mA .
The output 2 regulatorworks in tracking mode with the standby output voltage as a reference voltage. The output 2 regulator can be switched off via the Enable input.

Figure 1 : Output Voltage vs. Input Voltage.

Figure 2 : Quiescent Current vs. Supply Voltage.

RESET CIRCUIT

The block circuit diagramof the resetcircuit is shown in fig. 3. The resetcircuitsupervises the standby output voltage. The reset threshold of 4.7 V is defined by the internal reference voltage and the standby output divider.
The reset pulse delay time trD, is defined by the charge time of an external capacitor $\mathrm{C} T$:

$$
\mathrm{t}_{\mathrm{RD}}=\frac{\mathrm{C}_{\mathrm{T}} \times 2 \mathrm{~V}}{2 \mu \mathrm{~A}}
$$

The reaction time of the reset circuit depends on the discharge time limitation of the reset capacitor C_{T} and is proportional to the value of C_{T}.
The reaction time of the reset circuit increases the noise immunity. In fact, if the standbyoutput voltage drops below the reset threshold for a time shorter than the reaction time trR, no reset output variation occurs. The nominal reset delay is generated for standby output voltage drops longer than the time necessary for the complete discharging of the capacitor C_{T}. This time is typically equal to $50 \mu \mathrm{~s}$ if $\mathrm{C}_{\boldsymbol{T}}$ $=100 \mathrm{nF}$. The typical reset output waveforms are shown in fig.

Figure 3 : Block Diagram of the Reset Circuit.

Figure 4 : Typical Reset Output Waveforms.

DIM.	mm			inch									
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.							
A			4.8			0.189							
C			1.37			0.054							
D	2.4		2.8	0.094		0.110							
D1	1.2		1.35	0.047		0.053							
E	0.35		0.55	0.014		0.022							
E1	0.7		0.97	0.028		0.038							
F	0.6		0.8	0.024		0.031							
F1			0.9			0.035							
G	2.34	2.54	2.74	0.095	0.100	0.105							
G1	4.88	5.08	5.28	0.193	0.200	0.205							
G2	7.42	7.62	7.82	0.295	0.300	0.307							
H2			10.4			0.409							
H3	10.05		10.4	0.396		0.409							
L	16.7	16.9	17.1	0.657	0.668	0.673							
L1		14.92			0.587								
L2	21.24	21.54	21.84	0.386	0.848	0.860							
L3	22.27	22.52	22.77	0.877	0.891	0.896							
L4										1.29			0.051
L5	2.6	2.8	3	0.102	0.110	0.118							
L6	15.1	15.5	15.8	0.594	0.610	0.622							
L7	6	6.35	6.6	0.236	0.250	0.260							
L9	0.2									0.008			
M	2.55	2.8	3.05	0.100	0.110	0.120							
M1	4.83	5.08	5.33	0.190	0.200	0.210							
V4	40°												
Dia	3.65		3.85	0.144		0.152							

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved
HEPTAWATT ${ }^{\text {тм }}$ is a Trademark of STMicroelectronics
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

