

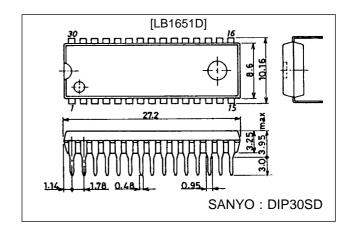
Dual Bidirectional Motor Driver

Overview

The LB1651D is a dual bidirectional motor driver that is designed to drive motors directly by TTL outputs. It provides the functions of bidirectional motor drive, brake that are determined by two inputs and the inhibit function that brings the output to a high impedance state.

Applications

- · Multi DC motor driver
- · Bidirectional motor driver
- Bipolar stepping motor driver


Features

- High output current (1 A/ch)
- Wide operating voltage range (4.5 to 36 V)
- Inhibit function
- Direct drive made possible by TTL, CMOS IC
- · High noise margin

Package Dimensions

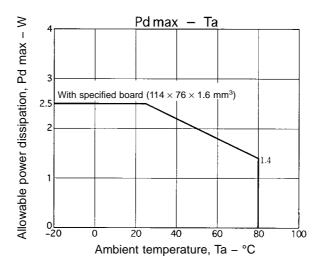
unit: mm

3196-DIP30SD

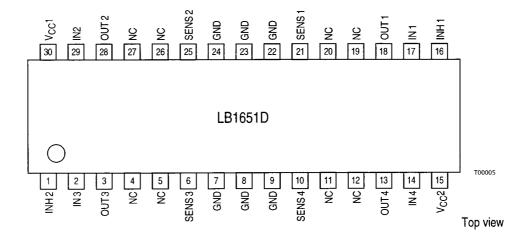
Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} 1		36	V
Logic supply voltage	V _{CC} 2		36	V
Input voltage	V _{IN}		7	V
Inhibit voltage	V _{inh}		7	V
Peak output current	I _{OUT}	1 ms non-repetitive	2	Α
Allowable power dissipation	Pd max	* With specified board	2.5	W
Operating temperature	Topr		-20 to +80	°C
Storage temperature	Tstg		-40 to +150	°C


^{*} Specified board: $114 \times 76 \times 1.6 \text{ mm}^3$

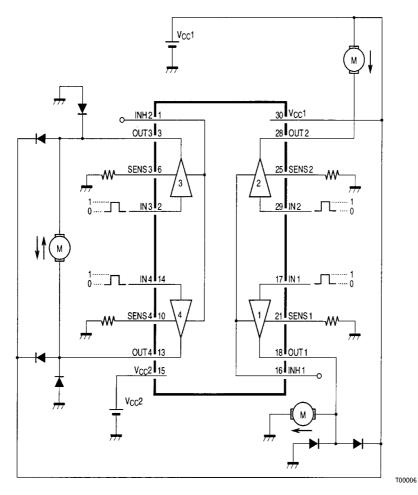
Allowable Operating Conditions at $Ta = 25^{\circ}C$

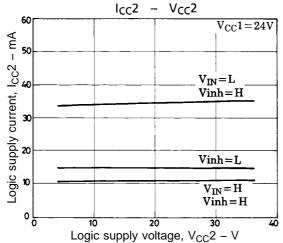

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V _{CC} 1		4.5 to 36	V
Logic supply voltage	V _{CC} 2		4.5 to 36	V

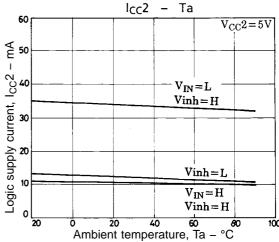
Electrical Characteristics at Ta = 25°C, $V_{CC}1$ = 24 V, $V_{CC}2$ = 5 V

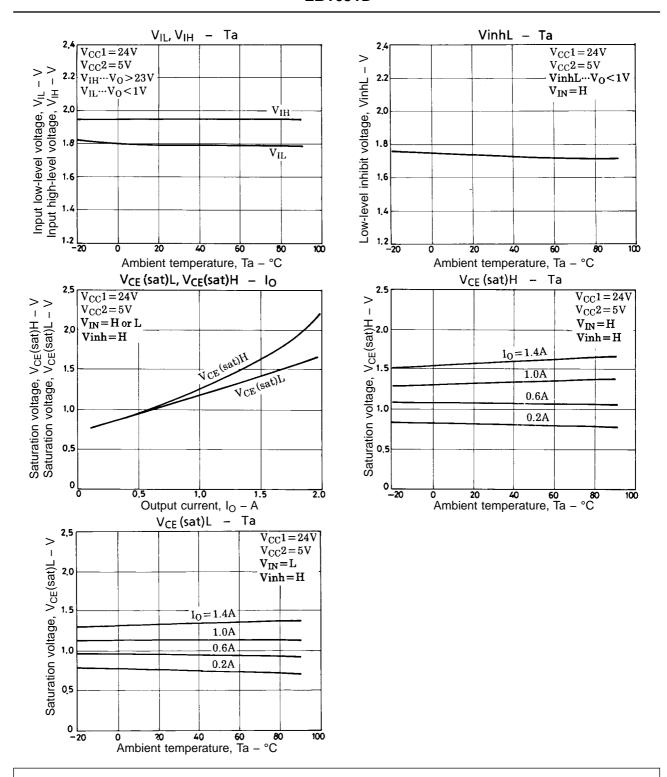
Parameter	Symbol	Conditions	min	typ	max	Unit
Supply current (Per channel)		$V_{IN} = L$, $I_O = 0$, $V_{IN} = H$			1.5	mA
	I _{CC} 1	$V_{IN} = H$, $I_O = 0$, $V_{IN} = H$			6	mA
		Vinh = L			1	mA
Logic supply current		$V_{IN} = L$, $I_O = 0$, $Vinh = H$		44	60	mA
	I _{CC} 2	$V_{IN} = H$, $I_O = 0$, $V_{IN} = H$			22	mA
		Vinh = L			24	mA
Low-level input voltage	V _{IL}		-0.3		+1.5	V
High-Level Input Voltage	\/	V _{CC} 2 ≤ 7 V	2.3		V _{CC} 2	V
	V _{IH}	V _{CC} 2 > 7 V	2.3		7	V
Low-level input current	I _{IL}	V _{IN} = L			±10	μΑ
High-level input current	I _{IH}	$V_{IN} = H - 0.3 V$		30	100	μΑ
Low-level inhibit voltage	VinhL		-0.3		+1.5	V
High-level inhibit voltage	VinhH	V _{CC} 2 ≤ 7 V	2.3		V _{CC} 2	V
	VIIIII	V _{CC} 2 > 7 V	2.3		7	V
Low-level inhibit current	linhL		-100	-30		μA
High-level inhibit current	linhH				±10	μΑ
Saturation voltage	V _{CE} (sat)H	I _O = -1 A		1.4	1.8	V
	V _{CE} (sat)L	I _O = 1 A		1.2	1.8	V
Sensing voltage	V _{SENS}				2	V

Pin Assignment




Truth Table


V _{IN} (per CH)	Vinh	Vo
Н	Н	Н
L	Н	L
Н	L	Open*
L	L	Open*


*: High impedance

Sample Application Circuit

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 1996. Specifications and information herein are subject to change without notice.