Current Transducer LT 2005-S For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). # $I_{PN} = 2000 A$ ## Electrical data | I _{PN} I _P R _M | Primary nominal r.m.s. current Primary current, measuring range @ ± 24 V Measuring resistance | | $\begin{array}{ll} 2000 \\ 0 \dots \pm 3000 \\ \mathbf{R}_{\mathrm{Mmin}} & \mathbf{R}_{\mathrm{Mmax}} \end{array}$ | | A
A | |---|---|------------------------------|---|------|--------| | | with ± 15 V | @ ± 2000 A _{max} | 0 | 7.5 | Ω | | | | @ ± 2200 A _{max} | 0 | 4 | Ω | | | with ± 24 V | @ ± 2000 A max | 5 | 27.5 | Ω | | | | @ $\pm 3000 \text{ A}_{max}$ | 5 | 10 | Ω | | I_{SN} | Secondary nominal r.m.s. current | | 400 | | mΑ | | K _N | Conversion ratio | | 1:5000 | | | | v c | Supply voltage (± 5 %) | | ± 15 | 24 | V | | I c | Current consumption | | $20 (@ \pm 24 V) + I_s mA$ | | | | $\check{\mathbf{V}}_{d}$ | R.m.s. voltage for AC isol | ation test, 50 Hz, 1 mn | 6 | | kV | # Accuracy - Dynamic performance data | \mathbf{X}_{G} | Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$
Linearity | | ± 0.3
< 0.1 | | %
% | |------------------------------|--|------------|---------------------|-----------------------|-------------------| | I _о | Offset current @ $I_P = 0$, $T_A = 25$ °C
Thermal drift of I_O | 0°C + 70°C | Typ
± 0.2 | Max
± 0.8
± 0.3 | mA
mA | | t _,
di/dt
f | Response time ¹⁾ @ 90 % of I _{P max} di/dt accurately followed Frequency bandwidth (- 1 dB) | | < 1
> 50
DC 1 | 100 | μs
A/μs
kHz | #### General data | $\mathbf{T}_{_{\mathrm{A}}}$ | Ambient operating temperature | 0 + 70 | °C | |------------------------------|---|-----------|----| | T _s | Ambient storage temperature | - 25 + 85 | °C | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 70°C | 25 | Ω | | m | Mass | 1.5 | kg | | | Standards ²⁾ | EN 50178 | | | | | | | ### **Features** - Closed loop (compensated) current transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0. ## **Advantages** - Excellent accuracy - Very good linearity - Low temperature drift - Optimized response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - Current overload capability. ### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. Notes : 1) With a di/dt of 100 A/µs ²⁾ A list of corresponding tests is available 980806/4 # **Dimensions LT 2005-S** (in mm. 1 mm = 0.0394 inch) #### **Mechanical characteristics** - General tolerance - Fastening - Primary through-hole - Connection of secondary Fastening torque - ± 0.5 mm - 4 holes Ø 8.5 mm 60.5 x 60.5 mm - M5 threaded studs 2.2 Nm or 1.62 Lb - Ft #### **Remarks** - I_s is positive when I_p flows in the direction of the arrow. - Temperature of the primary conductor should not exceed - Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.